
UNCLASSIFIED 

 
 
 

 
 
 

CTH Implementation of a Two-Phase Material Model 
With Strength: Application to Porous Materials 

 
 

A.D. Resnyansky 
 

Weapons Systems Division 
Defence Science and Technology Organisation 

 
DSTO-TR-2728 

 
 

ABSTRACT  
 
A material model accounting for strength developed earlier for two-phase materials is 
implemented in the CTH hydrocode. The strain response to load in the model is decoupled 
into shear and volumetric contributions in order to satisfy the model implementation 
requirements for CTH. Multi-phase description is realised via constitutive equations 
complementing the conservation laws for a material represented as a mixture of several 
phases. Such a formulation agrees well with the CTH code structure and is suitable for 
conventional user implementation. The implementation has been applied to a generic material 
representing sand at various porosities. The constitutive equations and equations of state have 
been fitted in order to describe literature data. Numerical  illustrations in the report 
demonstrate agreement of the calculation results with the anomalous behaviour observed in 
the literature for a highly porous sand at shock compression and a good description of the 
experiments available in the literature on the explosion of a sand-buried charge. 
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CTH Implementation of a Two-Phase Material 
Model With Strength: Application to Porous 

Materials   
 
 

Executive Summary  
 
 
Involvement of the Australian Defence Forces (ADF) in various operational theatres 
requires improvement of protective capability against buried mines and Improvised 
Explosive Devices (IEDs). The threat to a target (e.g., a vehicle) due to a detonating 
buried device is twofold: i) the structural threat due to mainly gaseous detonation 
products that are loading the target quite slowly in the millisecond range of time and 
over a wide area of the target; and ii) the impact threat due to the soil ejecta colliding 
with the target and transferring momentum to the target rather quickly within the 
microsecond range of time and localised over a compact area of the target. The impact 
threat is the most immediate and important one before the structural effects take place. 
 
To develop a protection capability against this impact threat, an enhanced assessment 
of the response of porous geological materials blanketing a detonating device and 
transferring momentum to the target via the ejecta impact needs to be undertaken. 
Such an assessment can be performed with the physics modelling tools, hydrocodes, 
such as LS-DYNA and CTH available in DSTO. However, even with the use of these 
powerful modelling techniques, behaviour of the porous geological materials, 
commonly sand or soil, is not easy to describe in the conditions of shock loading. 
Complexity in the behaviour of porous materials, demonstrated for example in [1], is 
manifested by highly non-linear response of those materials due to their multi-phase 
structure with drastically different compressibilities of constituents. In turn, the solid 
constituents of these porous mixtures are strength resistant and strain rate sensitive. 
This behaviour, specifically evaluation of the parameters responsible for the 
momentum transfer, is not well predicted within the traditional approaches using 
established material models available in the hydrocodes.  
 
In order to improve the hydrocode modelling capability, the present report describes 
an implementation of an advanced two-phase material model [2] that takes into 
account the multi-phase nature of the geological materials (sand, soil, etc). Along with 
the air contained in the pores, the condensed constituents of the materials are also 
compressible at this level of loads. In addition, the solid constituents are strength and 
strain rate sensitive. In the present report, the two-phase model [2] is implemented in 
the CTH hydrocode [3] and the implementation flowchart is briefly outlined. Sand is 
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considered as a model material in the test calculations. Mechanical characteristics of the 
material are fitted in order to correlate with available literature data for the 
constituents, namely, the air and quartz. The numerical illustrations demonstrate a 
good description of physical features that are typical for the porous materials at shock 
compression and are difficult to describe with material models available in the 
hydrocode. The first numerical example demonstrates the anomalous behaviour 
observed in experiments for highly porous sand, but this behaviour is not customarily 
predicted by available material models within the physics-modelling framework of the 
hydrocode. The second example illustrates formation of the soil ejecta due to explosion 
of a buried charge. Comparison of the numerical results with available literature 
experiments shows good agreement. The illustrations demonstrate the importance of 
the physics modelling for the description of parameters responsible for the momentum 
transfer from the soil ejecta to a target. 
 
The present model development and CTH implementation activity is also performed 
as a part of the joint efforts within the Modelling and Simulation Focus Area of the 
Conventional Weapons Technology Group (Terminal Effects) of The Technical 
Cooperation Program (TTCP). 
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1. Introduction  

Neutralisation of the effects of mines and buried Improvised Explosive Devices (IEDs) on 
affected vehicles and personnel requires an analysis of the target loading due to the explosion 
of a buried charge. Such an analysis involves a number of factors to consider. The most 
important ones amongst them are the size and area distribution of the charge, mechanical and 
thermal properties of the soil, the depth of burial, and the target stand-off distance. Other 
factors such as method of initiation, casing arrangement, and the properties of high explosive 
are still important, but they are somewhat secondary for charges buried under a layer of soil 
that is thick enough, as soon as the distribution of the energy to be released at a given depth of 
burial is known.  
 
The most critical factor of the target loading analysis, the momentum transfer from the soil 
ejecta to a target such as a vehicle’s floor, is mainly controlled by the density and velocity 
distributions through the ejecta thickness when the ejecta is impacting the target. The ejecta 
impact provides the highest level of the stress transfer contribution into the target, which may 
possibly be transmitted to the vehicle’s occupants behind the floor barrier facing the ejecta. 
The follow-up blast products provide a comparably smooth and gradual loading, highly 
energetic, though, to affect the target’s structural integrity and behaviour. Another important 
factor for the analysis is separation of the blast products from the soil particles (velocity non-
equilibrium in the gas-solid mixture). This factor is negligible for the camouflet blasts (the 
detonation products are contained underground) when the Depth Of Burial (DOB) is 
sufficiently large or the products do not break the surface before the ejecta reaches the target. 
On the other hand, if 1) DOB is not sufficient or/and 2) the target stand-off distance is large, 
then the gaseous products may break through and the gas-particle separation may increase 
with time and distance of travel making this factor more influential. At the same time, the 
localised impact damage effects on the target due to the charge explosion diminish with 
increasing stand-off distance or/and decreasing DOB. Moreover, structural effects could 
possibly be analysed while neglecting the ejecta impact on the target when using, as a basis 
for the analysis, the residual energy of the blast products after having broken through the soil. 
Therefore, the scenarios when this non-equilibrium is significant are of less interest from the 
viewpoint of the localised damage effects to vehicle and vehicle occupants. When evaluating 
these effects, the mass-velocity distribution determining the momentum transfer is believed to 
be the more relevant ejecta-related factor. Thus, omitting the structural response issue, the 
present consideration is restricted to the velocity equilibrium case. In the two-phase analysis, 
synergistic effects might also be taken into account if the impact and blast loadings occur 
simultaneously. 
 
For an analysis of behaviour of porous geological materials such as soil or sand we need to 
pay attention to a quite complex material response requiring an advanced approach. The first 
issue of the analysis is the porosity of the substances. The second issue is the complex 
behaviour of the solid constituents of the materials. Specifically, the silicon dioxide (silica) that 
is the most common component of the solid constituents of soils is known for by its 
abundance of high-temperature and high-pressure polymorphs. Other issues involve the 
presence of feldspar minerals and water (moisture content) that may easily change its phase 
state during the shock loading. As a starting point, we consider the two-phase representation 
of sand as a porous material with the solid silica constituent, omitting the phase transitions of 
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silica in the present consideration. Further work is planned to account for a phase transition 
using the three-phase modelling approach [1]. In the present work we employ a two-phase 
material model with strength [4]. 
 
Referring to the model implementation process, the user-implementation interface of modern 
hydrocodes poses certain restrictions on the implementation of material models in codes such 
as LS-DYNA [2] or CTH [3]. The two most critical restrictions are i) the use of the fundamental 
form of the conservation laws, namely, the mass, momentum, and energy conservation laws, 
and ii) the necessity of the decoupled representation of mechanical response in the form of 
separate spherical and deviatoric stress responses of a material. The decoupled response 
separates the pressure contribution calculations for the momentum update within the 
thermodynamic block of a code from the deviatoric stress calculations for the internal material 
parameters update within the constitutive block of the code. An example of an 
implementation dealing with these issues is shown in [5] for a rate sensitive strength model. 
Having specified the restrictions, it is still possible for code developers to implement, for 
example, a fully coupled system for the full deformation gradient or stress tensor (e.g. see the 
manual [3] for an example of the Transverse Isotropic (TI) model). The code developers can 
also escape the solitary form of the conservation laws and implement a few systems of the 
conservation laws for material components (e.g. see [3] for a few implementations of the Baer-
Nunziato multi-phase flow model). However, such implementations require almost full access 
to the code and cannot be made via the user-implementation interface.  
 
The initial version of the model being implemented in the present work has been published in 
[6]. Further development of this model has considered the inter-phase heat transfer, which is 
critical for porous materials and allowed the author to simulate the anomalous behaviour at 
shock compression [7]. The recent version [4] of the two-phase model has taken into account 
the strength resistance of condensed phases and, in turn, rate sensitivity of the yield limits of 
the phases. The present work deals with the CTH implementation of the two-phase model [4] 
that considers the inter-phase heat transfer and strength effects taking rate sensitivity into 
account. In this work, the CTH implementation is realised for two-phase porous materials. 
Adjustment of the implementation to any two-phase material, where phases are both 
condensed and the phase transition is possible, is a routine process provided that the phase 
transition kinetic is known (e.g. such an adjustment has been performed in an in-house wave 
code [4]).  
 
When implementing the model in a hydrocode, the present model formalism, similarly to [5], 
allows one to decouple stress response in two processing streams: 1) Elasto-Plastic (EP) block 
processing Constitutive Equations (CE) that describe the evolution of deviatoric elastic 
deformations directly linked with the shear stresses; and 2) Eulerian Remap Block (ERB) 
processing thermodynamic relations on the basis of Equations Of State (EOSs) that describe 
the volumetric (bulk) response of materials. Strictly speaking, constitutive equations may be 
used for calculation of not only the deviatoric stress evolution, but other internal variables. 
Because of the code structure, the CE block is used at the code point when deviatoric stresses 
are calculated and this block can be used for any evolution equations. Therefore, references to 
the CE and EP blocks are interchangeable in this report.  
  
The procedure of implementation in CTH is briefly described below with references to the 
code structure available in the public literature. The main CTH structure includes the Input 
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Block (IB), Lagrangian Block (LB), and Eulerian Remap Block (ERB) [8]. An essential 
component of CTH is the Database Management Block (DMB) that arranges, allocates, stores, 
and retrieves the data. However, this block is not separated from the remaining blocks, 
likewise IB, LB, and ERB are separated from each other. Rather, DMB code fragments precede 
every call of any major subroutine from IB, and, particularly, LB and ERB blocks. This enables 
the user to ignore the CTH database structure, unless, like in the present case, the database 
management requires additional allocation due to extra requirements for internal state 
variables. Publications [9, 10] describe the code structure in slightly more detail with 
references to specific routines of the code. The present implementation includes modifications 
to i) the input subroutines of the EP module in the IB part, ii) update of deviatoric stresses and 
extra variables in the LB part; and iii) update of key thermodynamic variables and extra 
variables using advected parameters and EOS in the ERB part. A recent CTH implementation 
in DSTO [5] describes the basic steps of the implementation. However, the present model is 
essentially more complex than that of [5] and requires more extensive use of extra variables 
and EOS modules of CTH.  
 
To illustrate numerically the present implementation, a response of generic sand is modelled 
with constituents of quartz and air. The model uses known thermo-mechanical data for 
polycrystalline or fused quartz with the air described as a polytropic gas. Numerical examples 
include the simulation of the shock wave compression of a highly porous sand, and the 
calculation results are compared with the shock compression data for silica [11]. With this 
calculation, the CTH code employing the present implementation demonstrates its ability to 
describe the anomalous behaviour of the Hugoniots [11] at a high porosity. Another example 
is the simulation of the expansion of an initiated High Explosive (HE) charge buried under a 
layer of sand. The experiments [12] are compared with the CTH calculations using two CTH 
database models and the implemented model. The numerical results show that the present 
model demonstrates an improvement in predictions when comparing with the models 
available in CTH.  
 
 
 

2. Constitutive Model 

2.1 Conservation Laws and Constitutive Equations 

The system of equations of the two-phase model with strength contains three conservation 
laws for mass, momentum and total energy with the stress tensor in the decoupled form σij = sij 
– pδij (see [4]): 
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Denotations of the physical variables are standard and described in [4]. The strength response 
is described by ‘specific’ strain eij when small shear deformations are assumed (see [1, 4, 5]). 
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Description of the strength response uses the same symmetrical velocity gradient as the 
majority of other strength sensitive models in CTH. The response is described by the 
following system of equations [4]: 
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where φij(1) = ρ [eij + (1 – θ) λij]/τ1 and φij(2) = ρ [eij – θ λij]/τ2. Superscript indices refer to the 
material constituent number and τ1 and τ2 are the relaxation time functions obtained for rate 
sensitive materials of the phases from the corresponding yield limits versus strain rate (see 
[13]). The parameters c and θ are mass and volumetric concentrations of the first phase and λij 
are components of the strain inter-phase imbalance [4], which evolves in accordance with the 
following constitutive equation [4]: 
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Function ψ in the last term of the right-hand side of the equations (2) is the compression 
kinetic from the following constitutive equations describing the phase transition and 
compaction due to relative compressibility between the phases [4]: 
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The inter-phase heat transfer is described with the following equation for the entropy 
disequilibrium χ [4]: 
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The inter-phase heat exchange kinetic ω is also to be specified [4, 7]. 
 
The system of differential equations of this subsection describes the behaviour of a two-phase 
mixture. However, this system calculates only the evolution of independent thermodynamic 
and kinematic variables (with the exception of entropy described indirectly by the energy 
conservation law). Therefore, the system should be completed with algebraic equations for 
dependent thermodynamic variables, which includes the kinetic functions for the constitutive 
equations and an equation of state. 
 
 
2.2 Gibbs Energies and Thermodynamic Potentials of two-phase mixture 

In order to specify relations between the dependent variables e, p, sij,, and T and independent 
variables ρ, c, θ, S, eij, λij, and χ, we need to recall the relations between the averaged variables 
and the variables associated with individual phases [4]. The phase-specific variables are 
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marked by superscripts ‘1’ and ‘2’ in parentheses for the first and second phases, respectively, 
with the first phase being air in the case of a porous material. Specifically, the phase 
independent variables are calculated from the averaged variables, using the concentration and 
disequilibrium parameters from the following relations [4]: 
 
ρ(1) = ρ c/θ ,  ρ(2) = ρ(1 – c) /(1 – θ ) ,  S(1) = ½(S + χ) /c ,  S(2) = ½ (S – χ) /(1 – c) , 
                        (6) 
eij(1) = θ (eij + λij (1 – θ )) /c ,  eij(2) = (1 – θ ) (eij – λij θ) /(1 – c) . 
 
The dependent averaged variables are calculated via the phase ones as follows 
 
e = c e(1) + (1 – c) e(2),   p = ρ2eρ = θ p(1) + (1 – θ ) p(2),  T = eS = ( T(1) + T(2))/2  . 
                        (7) 
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The fundamental thermodynamic characteristics used for the description of the mixture 
equilibrium is the Gibbs energy for each phase μk = e(k) + p(k)/ρ(k) – T(k)S(k) – eij(k)sij(k), k = 1,2. 
Affinity of the Gibbs energies characterizes phase stability (see [1] for details and an example). 
Similar generalization of the Gibbs energy for specific materials has been considered earlier 
for two-phase mixtures without strength in [6, 14] and for the mixtures with strength in [1, 4, 
5]. Using the Gibbs energy, the thermodynamic potentials of the mixture are (see [4] for 
details) 
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In order to satisfy thermodynamic correctness, the constitutive relations have the following 
restrictions on the right-hand sides (see [4]): 
 
φ = Λ·φ0   ,         ψ = Π0·ψ0  ,       ω = Ψ·ω0  .                   (9) 
 
Thus, when equations of state are given for each phase in the form 
 
e(1) = e(1)(ρ(1), eij(1), s(1))   ,    e(2) = e(2)(ρ(2), eij(2), s(2))  ,               (10) 
 
the conservation laws (1) and the constitutive equations  (2)-(5) generate a closed system of 
equations. The system can be solved numerically if functions e(1) , e(2) and φ0, ψ0, ω0 are 
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specified. An example of such a specification for porous sand will be shown in the next 
Section. 
 
 
 

3. Constitutive Relations and EOS 

3.1 Equation of State of two-phase mixture 

For porous materials, we specify the first phase to be air and the second phase a solid 
constituent. In the present implementation, to determine EOS (10) for the condensed 
constituent (the second phase in a porous mixture denoted by superscript ‘2’), we choose a 
reduced form of the Mie-Grüneisen-type EOS developed in [15] and used in [1, 4- 7]: 
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Here, α0, β0, and γ0 (Grüneisen coefficient) are material constants, cvS is the thermal capacity, 
and δ = ρ/ρ0S with initial density ρ0S. The constant a0 is the bulk sound velocity that is linked 
with the longitudinal and shear sound velocities d0 and b0 as follows 
 
a02 = d02 – 4b02/3   ,                  (12) 
 
and d in (11) is the second invariant of the ‘specific’ strain deviator: d = eij · eji /2. It should be 
noted that the arguments and the function itself for the internal energy (11) refer only to the 
second constituent of the two-phase mixture. 
 
Shear stresses are calculated from (11) for the solid phase as 
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Where the shear modulus G:  .02
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For the first constituent in porous material, the air, EOS in (10) is selected in the ideal gas 
form: 
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Here γ is the polytropic gas exponent, c0 is the sound velocity, cvg is the thermal capacity of the 
gas, and δ = ρ/ρ0g with the initial density ρ0g. The following natural restriction follows from 
the definition of the ideal gas EOS: c02 = γ (γ + 1) cvgT0. In this case, the variables relate only to 
the phase ‘1’. The initial densities of the two constituents ρ0g and ρ0S are used along with the 
initial density of porous material ρ0 in order to define initial mass and volumetric 
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concentrations c and θ from (6). These concentrations and density are used as initial data for 
the system of conservation laws and evolution equations.  
 
 
3.2 Constitutive Relations characterising strength 

The accounting for the strength of the second constituent (in the case of porous material) is 
realised via the constitutive equations (2). In order to close the equations, the relaxation time 
functions for solid constituents with strength should be chosen. In the present case, the 
function for the second constituent is chosen in the following form [5, 13]: 
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where s determined from s2 = sij·sij is the second invariant of the stress deviator. In the present 
work as well as in [13], the variable ε is associated with the elastic portion of deformation ε = 
s/(2G) and τ0, D0, H, N0, M are material constants. It should be noted that the constants in (11), 
(14) and (15) are specific to each phase and in the present implementation the function (15) is 
relevant only to the second phase of porous mixture. Thus, using the function (15) for the 
second phase as τ2, we can determine φij(2) and, assuming absence of any strength effects in the 
first gaseous phase, we take φij(1) = 0 in (2) and (3) for the present case.  
 
In order to facilitate choice of constants in (15), an algorithm of fitting the constants suggested 
in [13] has been realised in the present implementation. Let us briefly outline the algorithm. 
Firstly, the user has to select two yield limit points Y1 and Y2 at different strain rates 1  and 

2 . It should be noted that this choice is a responsibility of the user and the present fit does 
not guarantee a proximity of any pre-determined experimental or hypothetical curve passing 
through the two given points in the (Y- ) plane to the curve obtained with this fit except for 
the two points specified. Secondly, the user needs to select constants N0 and M as an initial 
density and a multiplication factor of defects in the condensed material. As shown in [16], 
these constants have a much smaller influence on the fit of the curve than the constants τ0 and 
D0. The parameter H is tabulated for future use to describe the hardening behaviour of 
materials and cannot be used for modelling such a behaviour with the present choice of ε in 
(15) (see discussion on this topic in [5]). Therefore, it is taken H = 0 in the present case. The 
idea of fitting constants τ0 and D0 in [13] is based on an approximation of the stationary 
solution of the viscoelastic model equations [17]. It was observed in [13] that this solution is 
sufficiently close to the yield limit point. The corresponding stress relaxation equations for 
characterising the plasticity state (a single-phase analogue of the equation (2)) are as follows 
(see [5]): 
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In the uniaxial stress conditions (σ22 = 0), the yield limit is Y = σ11 and 11 xu  . Therefore, 
the stationary point of (16) after index summation can be found from 
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The last equation with τ substituted by (15) results in 
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that allows one to find τ0 and D0 when two pairs {Y1, 1 } and {Y2, 2 } are given. Usually, these 
data are known from the Split Hopkinson Pressure Bar (SHPB) tests at compression. 
However, the same algorithm can be used for the tensile tests as well. For simplicity, we 
assume that when necessary we can utilize another pair at tension with yield limits Y1t and Y2t 
using the same strain rates. In the present implementation we use p < 0 as a condition for use 
of the tensile yield limits. 
 
 
3.3 Thermo-Mechanical and Mass-Exchange constitutive relations 

Closure of the constitutive equation (5) describing inter-phase heat exchange can be done via 
specification of the right-hand side ω for the equation. In conjunction with the 
thermodynamics condition (9), the required inter-phase heat exchange kinetic ω0 in (5), (9) is 
used in the following form [4]  
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where h is the heat transfer coefficient, d0 is a typical material structure size (e.g. the grain  or 
cell size for porous materials), AS is a dimensionless coefficient (a function of the factors 
promoting or resisting the heat exchange, see [7] for details; in the present work AS = 400), and 
k1 and k2 are the thermal conductivities of the phases. Initial entropy concentration χ can be 
calculated from initial temperatures T(1) = ∂e(1)/∂s(1), T(2) = ∂e(2)/∂s(2) and from densities (6) if the 
temperatures initially are not in equilibrium. Omitting this rather exotic case in the present 
implementation, we take s = 0 and χ = 0 as the initial data (the initial temperatures of the 
phases take the reference values in this case). 
 
For closure of the mass exchange constitutive equation (the first equation from the pair (4)), 
the function φ should be defined via the specification of φ0 from (9). In the case of a phase 
transition occurring between two phases of a two-phase material, an example of the definition 
of this function can be found in [4]. In the present case of a porous material, absence of the 
inter-phase mass exchange can be assumed. Therefore, the choice φ = 0 in (20) for the porous 
mixture finalises definition of the mass-exchange kinetic. 
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3.4 Compaction kinetic 

The last equation to be specified is the right-hand side ψ for the constitutive equation 
describing the inter-phase compressibility (the second equation from pair (4)). This function 
(the compaction kinetic) is normally determined from the SHPB compaction tests when the 
porous sample is confined within an assembly maintaining a constant pressure (e.g. see [18]) 
or within a container with rigid walls maintaining zero lateral strain. In the assumption of 
uniaxial strain, one-dimensional homogeneous deformation (u =  ·x +u0), and absence of 
mass exchange, the system of equations for determination of the compaction kinetic is 
reduced from (1-5) to the following 
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            (19) 

 
Here,   is the rate of deformation, which can be a function of time, and the entropy 
dissipation term in (19) is (see [4]):  
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In the absence of inter-phase mass exchange for the present case, φ = 0 and, because of the 
gaseous first phase, φij(1) = 0. Keeping in mind that the relaxation function τ2 is assumed to be 
determined from appropriate SHPB data for the second constituent, we can rewrite (19) in the 
following further reduced form 
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where sij(2) =2G2(eij – λij θ). Therefore, ρλij = – sij(2)/2G2, and ρeij = (1–θ) sij(2)/2G2. The system (21) 
for the stress tensor has been obtained from (19), when multiplying the corresponding 
equations by G2 (assuming this modulus to be a constant within a single time step) and by 
manipulation of the ‘specific’ strain and the strain disbalance to produce sij(2). Thus, the system 
(21) allows one to calculate ρ, θ, χ, S, e11, e22, λ11, and λ22 as soon as the right hand sides in (21) 
are given. Here c is constant due to the absence of mass exchange in the porous mixture. The 
stresses σij = sij – pδij are computed from (7) as follows 
 
σ11 = (1–θ) s11(2) – θ p(1) + (1 – θ ) p(2)  ,       σ22 = (1–θ) s22(2) – θ p(1) + (1 – θ ) p(2)  ,           (22) 

UNCLASSIFIED 
9 



UNCLASSIFIED 
DSTO-TR-2728 

 
where p(1) and p(2) are obtained from EOSs (14) and (11), using the thermodynamic identity for 
individual phases, similarly to (7). Summarizing, while the functions τ2 and ω having been 
pre-determined, the function ψ can be fitted from the stress-strain curves recorded during 
SHPB compaction experiments. 
 
As a first approximation case for the compaction kinetic of sand, the function ψ0 in (9) was 
taken from [6] in the following form: 
 
ψ0 = ψ00θ (1–θ) (θ –θ0(p)) ,   at  θ > θ0(p)  ,   
                      (23) 
ψ0 = 0                                ,   otherwise, 
 
where θ0(p) is arranged in such a way that θ0 = θ00 at p < pc and θ0 quickly drops from the initial 
value θ00 to zero in a smooth way when p exceeds pc (a simple polynomial approximation with 
the power exponent nc). This function (23) is used in the present calculations as a compaction 
kinetic. 
 
 
 

4. CTH Implementation 

The present implementation affects the CTH blocks, IB, LB, and ERB, mentioned earlier, and 
allocates extra memory in a DMB module of LB for the Internal State Variables (ISVs).  
 
 
4.1 Input Block 

For the input block, IB, three subroutines [5, 9, 10, 19], UINEP.FOR, UINISV.FOR, and 
UINCHK.FOR, are modified. In addition, modifications of two substitute subroutines, 
EOSVEI and EOSVEK, of the EOS input module are introduced in two subsequent subsections 
as described below. 
 
4.1.1 EOSVEI modifications 

In order to conduct the EOS calculations, the substitute subroutines available for an EOS one-
component VE model are replaced by subroutines representing the present EOS combined 
from (11) and (14) via the mixture rule (7). Thus, the ‘VE’ identifier along with the 
corresponding input data refers to the present EOS model. The input EOS data are taken from 
the EOS_data array by selection of the material’s name in the corresponding section related to 
the specified model. However, this dataset has to be replaced by explicitly given data that are 
necessary for the present model. In doing so, any material name can be used as the dummy 
name in the EOS input (for example, the material name ‘pmma’ is used in the input decks 
below). 
 
The EOS subroutines require the initial densities of the mixture and phases (they are 
calculated later on in the EP part of the input). Thus, the initial density of the porous material 
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and the densities of the first and second phases have to be calculated beforehand and 
introduced explicitly via three successive variables that are an input in the original VE 
subroutine (they are denoted by ‘RO’, ‘T0’ and ‘CV’, respectively, by the subroutine 
convention).  
 
4.1.2 EOSVEK modifications 

The extra variables to be used in the EOS block are introduced in this subroutine because the 
EOS substitute subroutines do not provide access to the extra variables defined in the CE 
block. Thus, the value exchange between the EOS and CE extra variables at a common point of 
the code is needed (see subsection 4.3.1 below). The extra variables required by the EOS 
thermodynamics block for use with the model are: i) symmetric ‘specific’ strain 5-set tensor eij 
(ER variables); ii) scalar mass concentration c (CRMS variable); iii) scalar volume 
concentration θ (RTET variable); iv) scalar entropy disequilibrium χ (XIR variable); and v) 
symmetric strain disbalance 5-set tensor λij (LMR variables). Specification of the internal 
parameters for each of the variables is described in more detail below, when outlining 
modifications for the subroutine UINISV. Along with the thermodynamic variables provided 
by CTH, this set is sufficient for calculation of all necessary thermodynamic functions in the 
EOS module. 
 
4.1.3 UINEP modifications  

UINEP.FOR modifications read in the data from VP_data input file into the VPUINP array 
allocated for the EP related input data [5, 19]. Because of the access restrictions to the EOS 
user-implementation block, both, EOS and CE data, are taken from the VP_data input file that 
results in a fairly significant block of data. The data needed for the model input are: ‘RHO’, 
‘C0G’, ‘GAMG’, ‘RHOS’, ‘C0S’, ‘B0S’, ‘ALF’, ‘BET’, ‘GAMS’, ‘CVS’,’PRS0’, ‘LGEP1’, ‘LGEP2’, 
‘Y1C’, Y2C’, ‘Y1T’, Y2T’, ‘AN2’, ‘AM2’, ‘TET00’, ’PCR’, ’ANCR’, ’PSI00’, ’D0’, ’AKG’, ’AKS’, 
and ‘AHTS’.  
 
These constants represent the following: 
- initial density of porous material for RHO (ρ0); 
- the bulk sound velocity of the gaseous phase for C0G (c0 in (14)); 
- the polytropic gas exponent for GAMG (γ in (14)); 
- initial density of the solid phase for RHOS (ρ0S in (11)) 
- the bulk sound velocity of the solid phase for C0S (a0 in (11)); 
- the shear sound velocity of the solid phase for B0S (b0 in (11)); 
- the bulk modulus exponent of the solid phase for ALF (α0 in (11)); 
- the shear modulus exponent of the solid phase for BET (β0 in (11)); 
- the Grüneisen coefficient of the solid phase for GAMS (γ0 in (11)); 
- the thermal capacity of the solid phase for CVS (cvS in (11)); 
- ambient pressure for PRS0 (p0 in (11); 
- decimal logarithm of strain rate related to the first test point for LGEP1 (log 1  in (18)); 

- decimal logarithm of strain rate related to the second point for LGEP2 (log 2 in (18)); 
- the yield limit at compression related to the first point for Y1C (Y1 in (18)); 
- the yield limit at compression related to the second point for Y2C (Y2 in (18)); 
- the yield limit at tension related to the first point for Y1T (Y1t in (18)); 
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- the yield limit at tension related to the second point for Y2T (Y2t in (18)); 
- the initial defect density related to the solid phase for AN2 (N0 in(15));  
- the defect multiplication coefficient related to the solid phase for AM2 (M in(15)); 
- the starting volume concentration for TET00 (θ00 in (23)); 
- the critical pressure of the compaction kinetic for PCR (pc in (23)); 
- the power exponent of polynomial approximation of the kinetic for ANCR (nc in (23)); 
- the proportionality constant of the compaction kinetic for PSI00 (ψ00 in (23)); 
- the characteristic material structure size in the heat transfer kinetic for D0 (d0 in (18));  
- the thermal conductivity of the gaseous phase for AKG (k1 in(18)); 
- the thermal conductivity of the solid phase for AKS (k2 in(18)); and 
- the dimensionless coefficient of the heat exchange kinetic for AHTS (AS in (18)). 

 
It should be noted that the model uses non-standard input units in cm (length), g (mass), 
10μsec = 10–5sec (time), and ºK (temperature). The strain rate 

 
for LGEP1 and LGEP2 is 

taken in inverse seconds. If the value Y1T is negative then the data Y1T and Y2T are taken to 
be identical to the set Y1C and Y2C. The derived pressure unit in this dataset is GPa. At the 
end of the modifications, the initial value of Poisson’s ratio, and the bulk and shear modulus 
are calculated and initially checked in the same UINEP.FOR subroutine. 
 
4.1.4 UINCHK modifications  

UINCHK.FOR modifications call new subroutines VERCHK.FOR and VERCHX.FOR. Before 
the calls, the modified code checks if the assigned MODLEP number for the present 
constitutive model is in agreement with the substituted EOS number MEQ [19]. The next part 
of the modifications assigns the necessary model-type attributes of the model such that 
deviatoric stresses will be calculated. Then, a standard call to the subroutine SI2CTH 
introduces the unit transformation constants into a part of the input array VPUINP. The new 
subroutine VERCHK.FOR transforms the constants into the CTH units from the non-standard 
input units, introduces global constants (the ‘GC’ part [19] of the array VPUINP) such as the 
ambient pressure and reference temperature used in (11) and fills in the ‘DC’ part of the array 
with several derived constants used for EOS and CE calculations such as the time relaxation 
constants for (15).  
 
The new subroutine VERCHX.FOR called afterwards replaces the EOS input data (UI) by the 
data from the VP_data file, and recalculates auxiliary constants for the initial cycle of the EOS 
calculations (before the EP input) filling in the tail of the UI array for the EOS block [19] with 
these constants. The EOS constants previously taken from the EOS analogue of the VP_data 
file are now replaced by the data described above in the present section, which is done when 
calling VERCHX.FOR. The whole set of variables, when comparing with only 3 variables 
introduced in EOSVEI.FOR, is prepared for the EOS module in this subroutine. However, the 
mass calculation is processed earlier than the elasto-plastic input and should be preceded by 
input of the EOS data. As mentioned in subsection 4.1.1, the code uses the EOS data for the 
initial cycle calculation of mass arrays. In order to use the input data correctly, when using the 
EOS identifier in the EOS section of the CTH input, we explicitly assign values of the initial 
mixture and phase densities for the EOS model to be substituted, while leaving the remaining 
parameters of the EOS input intact. These values should be in agreement with the value of 
‘RHO’ in the VP_data input, and with the values for the density of the gaseous phase 
calculated from C0G, GAMG and PRS0 and for density RHOS for the solid constituent. 
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4.1.5 UINISV modifications  

UINISV.FOR modifications make two calls for a standard subroutine MIGSEX [19] setting up 
default values for extra variables and for a new subroutine VEREXV. The subroutine VEREXV 
sets up extra variables to be used in the CE block. Some values of the extra variables are 
shared via the VERSWP subroutine outlined below in the ERB modifications. This value 
exchange is needed in the present implementation because access to the EOS block is limited 
and extra variables defined in EOSVEK above cannot be easily reached. The whole set of extra 
variables, which is required by both the CE and the EOS thermodynamics blocks for use with 
the model and being specified in the VEREXV subroutine, is: i) symmetric ‘specific’ strain 5-
set tensor eij (E variables); ii) scalar mass concentration c (CMS variable); iii) scalar volume 
concentration θ (TET variable); iv) scalar entropy disequilibrium χ (XI variable); v) symmetric 
strain disbalance 5-set tensor λij (LM variables); vi) the old density at the start of the time cycle 
calculation (RHOO variable); and vi) entropy at the start of the time cycle calculation (ENT 
variable). This set is sufficient to calculate all the necessary thermodynamic functions in both 
the EP and EOS modules. The tensor character for variables E and LM and the scalar character 
for the remaining variables are specified by proper selection of the parameter ITYPE in the 
subroutine. All the variables are being advected at the Eulerian remap step except for the last 
two, which are demanded by appropriate selection of the parameter IADVCT for the variables 
defined above (see [19]). The dimensioning parameter (array RDIM [19]) is set up in 
accordance with the physical nature of the extra variables. The initial data for all the variables 
except the mass and volume concentrations and the old density are set to zero. The initial data 
for these concentrations and the density are taken from the values determined in the UINCHK 
(more precisely, in the VERCHK) subroutine. 
 
 
4.2 Lagrangian Block 

For the second LB part of the code, two subroutines of the main LB subroutine ELSGE are 
involved in the modifications. The first is the database one processing subroutine, ELSGD, 
and the second is the main processing subroutine ELSG [5, 9, 10, 19]. 
 
4.2.1 ELSG modifications  

A database (DMB) subroutine dealing with the ELSG subroutine is modified to increase the 
number of scratch arrays that are necessary for processing all the extra variables by setting the 
relevant variable (the number of scratch arrays) to a larger value for the present model. The 
ELSG subroutine that is the main CE driving part of the CTH code processes the stress tensor 
equations taken in the Jaumann derivative form [20]. The equations for the deviatoric part of 
the stress tensor are an analogue of the equations (2) of the model. The initial stage of the 
ELSG modifications extracts both the symmetric and the skew-symmetric parts of the velocity 
gradient at an advanced half time step [20] t = tn+½, density at the new time step t = tn+1 and 
pressure, temperature, and stress deviators at an old time step (at the start of the time cycle 
calculation) t = tn. Extra variables, namely, mass, volume, and entropy disequilibrium 
concentrations, as well as ‘specific’ strain, the strain disbalance, and density and entropy at the 
old time step are retrieved and the extra variable update is conducted. As a result, the main 
driving subroutine VERDRV specified for local DMB-extracted arguments as VERSIG 
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performs the following: i) within VERSIG, the extra variables for mass, volume and entropy 
disequilibrium concentrations are calculated by subroutine VEREXD, and ii) the stress 
deviator for the second constituent is calculated using equations deduced similarly to [5] in 
the manner that the system (21) is obtained where G2 should be taken at an advanced half time 
step. These calculations are followed by calculations of the ‘specific’ strain and strain 
disbalance using subroutine VERRLX for calculation of the stress return to the yield surface.  
 
Summarizing, the model modifications of the ELSG subroutine include the calculation of: i) 
the modulus G2 at t = tn; ii) the invariant d of the tensor eij(2) from (11) at t = tn; iii) the Gibbs 
potentials and the potentials Λ and Π0 from (8) at t = tn; iv) the mass, volume and entropy 
disequilibrium concentrations at t = tn+1 using the subroutine VEREXD; v) the shear stresses 
sij(2) at t = tn; vi) the modulus G2 at t = tn+½, as an average of G2 at the old and new time steps; 
vii) an intermediate stress deviator s*ij using the elasticity equations (ignoring the relaxation 
terms in the stress equations); viii) the intermediate stress intensity according to (s*)2 = s*ij· s*ij 
for the second phase; ix) the scaling factor of the stress deviator (the yield return) using the 
subroutine VERRLX; and x) the stress tensor sij(2) at t = tn+1 followed by calculations of eij and 
λij. 
 
Briefly specifying VEREXD, the mass concentration does not change in the present 
implementation due to absence of mass exchange between the phases in the porous material; 
the volume concentration is calculated from (4) as dθ/dt = – ψ within the Lagrangian step with 
θ taken at the new time step inside ψ defined from (9), (23); and the entropy disequilibrium is 
calculated from (5) as dχ/dt = – ω within the Lagrangian step with χ taken at the new time 
step inside ω defined from (9), (18).  
 
Calculations of the subroutine VERRLX are practically identical to the stress relaxation 
calculations realised for the decoupled Maxwell-type model and described in [5]. Namely, 
using the elastic trial stress s* mentioned above as an initial data point within the Lagrangian 
step for the equation ds/dt = – s/τ2, we can calculate the stress intensity s at t = tn+1 (see [5] for 
details). The stress deviators are calculated afterwards in the standard fashion: 
 
sn+1ij = (sn+1/ sn)· snij . 
 
In the constitutive equation calculations outlined above, new values of the concentration 
parameters and the stress invariant at t = tn+1 are calculated by iterations, using Newton’s 
method. 
 
Thus, the whole set of the extra variables c, θ, χ, eij and λij is calculated in the present 
subroutine for the Lagrangian step. However, the variables have to be updated on the 
Eulerian remap step after advection and used afterwards for calculation of the remaining 
thermodynamic parameters using EOS at the end of the time cycle calculation.  
 
 
4.3 Eulerian Remap Block 

The modification in the ERB block deals with the EREB subroutine [5, 9, 10, 19]. Three parts of 
this modification deal with i) preparation of the extra variables for the thermodynamic 
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processing; ii) EOS modification to the present model’s EOS; and iii) adjustment of the extra 
variables to the present thermodynamics state using the advected values [21]. 
 
4.3.1 EREB modifications  

The first part of the modifications calls subroutine VERSWP. The subroutine replaces values 
of the whole set of 13 thermodynamic extra variables defined in EOSVEK and accessed via the 
EOS substitute subroutines by values of the first 13 (out of the whole set of 15) variables 
defined in the UINSIV subroutine and accessed via the CE subroutines. These variables have 
been updated in the ELSG subroutine on the Lagrangian step (see the previous subsection). 
 
The second part of the modifications is dealing with EOS used in the following two forms 
admissible by the CTH code: the energy form and the temperature form (see [22]). The 
corresponding substitute subroutines EOSVEV and EOSVES have been modified for the 
present EOS. In order to satisfy the variable choice requirement, the present EOS needs to be 
reformulated in the density-energy and density-temperature forms. This is done by using (6), 
(7), (10), (11) and (14). To facilitate the calculations, entropy is calculated in these subroutines 
from the internal energy or temperature by iterations using Newton’s method. The 
subroutines must calculate the following derivatives of dependent thermodynamic variables,  
namely, (∂p/∂ρ)T, (∂p/∂T)ρ, (∂e/∂ρ)T, and (∂e/∂T)ρ. Here energy, e, is a function of ρ and T. The 
derivatives are obtained by the standard thermodynamics rules using the internal energy 
potential e(ρ, S) from derivatives over ρ and S. For example,  
 
(∂e/∂ρ)T = (∂e/∂ρ)S – (∂e/∂S)ρ(∂T/∂ρ)S / (∂T/∂S) ρ   . 
 
The remaining derivatives are obtained in a similar manner. 
 
After the energy update at the thermodynamics-processing module of the Eulerian remap 
block in EREB, the last part of the modifications finalises preparation of the extra variables for 
the next time step. Specifically, using the internal energy, density and advected stress and the 
extra variables that are common to the EOS and EP groups, entropy is calculated from EOS 
and along with the density is stored as the two last variables of the EP group in order to have 
these variables in the ELSG subroutine at the start of processing the next time cycle. 
 
 
 

5. Shock Propagation in Highly Porous Material 

The first set of test calculations simulates plate impact experiments in the one-dimensional set-
up. This modelling is aimed to check out if the present implementation is capable of 
describing the anomalous behaviour of highly porous materials. This behaviour is well known 
for the majority of porous substances at high and extreme porosities and manifests itself at the 
shock loading of porous samples as decreasing density behind the shock front when the 
pressure increases in a certain pressure range.  
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5.1 Parameters and Hugoniot of Silica 

The specific purpose of the present implementation was the description of sand subject to 
loading by a detonating charge. Therefore, this specific porous material is under consideration 
in the present work. A further modification of the implementation for the description of the 
shock behaviour of a few metallic powders with the constitutive relations taken from [4, 6-7] is 
a routine procedure. Turning to sand, the solid constituent of this porous mixture is silica. The 
pressure-density dependences behind the shock front (Hugoniot) are reported for many 
porous substances including porous silica. Hugoniots for silica taken from paper [11] are 
shown in Fig. 1 at the initial material densities ρ0 of 0.4 and 1.55 g/cm3. It is seen from Fig. 1(a) 
that at the high porosity m more than 6 (m = ρ0S/ρ0) if ρ0 = 0.4 g/cm3 (for polycrystalline quartz 
as the solid constituent, m = ρ0S/ρ0 = 2.65/0.4 = 6.625), the Hugoniot demonstrates anomalous 
behaviour in the pressure range between 5 and 20 GPa. Besides, the silica material appearing 
in nature as quartz is a material manifesting more complex behaviour than many metals. In 
particular, silica is subject to a few high-pressure phase transitions to polymorphs that have a 
significantly higher reference density than crystalline or amorphous quartz at the ambient 
pressure (see Fig. 1(b) for schematics of the static pressure-temperature phase diagram).  
 

   
Figure 1. Experimental Hugoniots of porous silica at two initial densities [11] (a) and a simplified 

schematic of the silica phase diagram (b) 

 
It should be noted that the simplified diagram in Fig. 1(b) ignores numerous high-temperature 
polymorphs for the sake of simplicity because reference densities of these polymorphs are 
quite close to that of the quartz at the ambient pressure and temperature (the α-quartz for the 
polycrystalline material). Comparing the α-quartz with its high pressure polymorphs, the first 
high pressure polymorph, coesite, shows at least a 10% reference density increase and the 
second one, stishovite, more than 60%. Taking into account a phase transition within the solid 
constituent would require a three-phase model such as [1] for a single transition and a multi-
phase model with four or more phases for additional phase transitions. The present 
implementation takes a simplified approach with a single solid phase in order to remain 
within the two-phase model framework. 
 
The ability of the present model to describe behaviour of highly porous metals has been 
demonstrated in papers [4, 7], using an in-house code based on the Godunov method. One-
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dimensional calculations with this code were verified against plane impact data on the shock 
behaviour of a few porous substances. Because of the simplified description of sand in the 
present work, the following flowchart will be used for verification of the present 
implementation. For the critical case of a highly porous silica, a one-dimensional calculation 
will be conducted using the code [4, 7]. After that, results of the calculations will be compared 
with the modelling results obtained with CTH using the present implementation.  
 
First of all, the material constants for the two-phase model have to be specified in a form that 
is practically identical for both the code [4, 7] and the present CTH implementation. The 
parameters to be used are listed in Subsection 4.1.3. Amongst them, a number of constants are 
well determined such as the sound velocity and polytropic exponent of the air: c0 = 0.34 km/s 
and γ = 1.4, and the ambient pressure, p0 = 1 bar. For quartz, the heat capacity is taken from 
[23] cvS = 0.75 J/g/ºK with the solid density ρ0S = 2.65 g/cm3 for polycrystalline quartz and ρ0S 
= 2.2 g/cm3 for fused quartz. The initial density of porous silica to be used in the one-
dimensional calculations is ρ0 = 0.4 g/cm3. The shear modulus G = 31.2 GPa and the bulk 
modulus K = 37.2 GPa. The modulus’ pressure derivatives from [24] along with the Hugoniot 
data [25] give: a0 = 4.057 km/s; b0 = 3.43 km/s; α0 = 0.1; and β0 = 1. While varying somewhat 
with density in reality, the Grüneisen coefficient is taken as a constant γ0 =0.55 from [26] for 
the pressure range of interest. The strength data for quartz vary in the literature within a quite 
wide range from tens of MPa to a few GPa. Therefore, as a plausible choice in the static-
dynamic range for a quite wide span of strain rates: 1  =10–2s–1; 2  = 103s–1, we take the yield 
limit values as Y1 = 200 MPa; Y2 = 400 MPa at compression. At tension, the Y-values would be 
more reasonable, in fact, to relate to a sandstone rather than to a polycrystalline or fused 
quartz material, thereby reducing these values by an order or so (e.g. see [27, 28]). For the 
shock loading tests used for verification of the behaviour of the highly porous sand, we are 
mostly interested in the compression state of the material. Therefore, we arbitrarily take Y1t = 
Y1; Y2t = Y2 in the one-dimensional calculations. The solid defects constants in (15) are taken as 
N0 = 104 and M = 106. The compaction kinetics constants in (23) are chosen to be identical to 
those from [6]: θ00 = 0.25; pc = 1.25 GPa; nc = 4; ψ00 = 15 s/m2. For the heat transfer kinetics we 
take the grain size as d0 = 0.1 mm and the heat conductivity constants for the air and quartz as 
k1 = 0.025 W/m/ºK and k2 = 2 W/m/ºK with the dimensionless coefficient AS = 400 (d0 and AS 
are interrelated when mutually changing; see [4] for details). 
 
 
5.2 Shock compression calculations using verified code 

For one-dimensional calculations of the highly porous silica we choose the constants above 
with the initial solid density corresponding to the polycrystalline quartz. Ignoring the phase 
transitions in quartz, we can evaluate ‘partial’ Hugoniots of the porous material using the 
technique [7] while keeping various thermodynamic parameters at equilibrium.  
 

UNCLASSIFIED 
17 



UNCLASSIFIED 
DSTO-TR-2728 

 
Figure 2. Calculated PTE Hugoniot (solid curve) at the pressure-temperature equilibrium [7] compared 

with the experimental Hugoniot data (points [11]) 

Traditionally, the Hugoniot of a multi-phase material is a locus of states behind the shock 
front that are considered to be in thermodynamic equilibrium between the material phases. 
However, as noted in [7], this is not always the case. At certain levels of loads some 
thermodynamic parameters between the phases may be in equilibrium, whereas the others are 
not. Thus, a variety of Hugoniots can be derived and depending on the meso-mechanics of a 
multi-phase material one Hugoniot from the variety can supersede another, resulting in a 
composite Hugoniot for a real material under shock loading (see [1, 4, 6, 7] for details and 
examples). Specifically, for some typical thermodynamic parameters Hugoniots are referred to 
as PE (Pressure Equilibrium) and PTE (Pressure-Temperature Equilibrium) Hugoniots (other 
Hugoniots are also possible, see [1, 4, 7] for details). For the present case, where the nature of 
equilibrium is changing during shock loading, the anomalous pressure-density behaviour 
behind the shock front (the PTE Hugoniots are usually anomalous for highly porous mixtures) 
supersedes the conventional behaviour (the compaction stage). For illustration, the calculated 
analytical PTE Hugoniot of sand at ρ0 = 0.4 g/cm3 shown in Fig. 2 by a solid curve manifests 
the anomalous behaviour. However, as mentioned above, this behaviour is only a part of the 
whole picture. Different porous mixtures realize different mechanisms of transition from one 
regime to another.  
 
The highly porous silica demonstrates a relatively low point of transition to the anomalous 
path. This is likely to happen immediately after compaction. Thus, the experimental points in 
Fig. 2 demonstrate the anomalous behaviour above 5 GPa and conventional behaviour below 
this point, where the compaction curve reflects the conventional relationship of density rise 
with pressure increase. It should be kept in mind, that the density shift of the calculated 
Hugoniot from the experimental points in Fig. 2 is possibly associated with a phase transition, 
and it is not taken into account for the sake of simplicity. However, an attempt to simulate the 
switch from the conventional to the anomalous behaviour observed in the experiments shown 
in Fig. 2 will be undertaken. 
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Figure 3. Numerical results for the porous sand using the code [4] 
 
The first calculation is conducted with the one-dimensional in-house code [4, 7] based on the 
Godunov method [29]. This code has been verified for a few porous and condensed two-phase 
mixtures [4, 6, 7] using relations including, but not limited to the constitutive functions 
described above. Numerical results obtained with this code are shown in Fig. 3 for the high 
velocity impact set-up with a copper flyer plate and a target representing a layer of sand. 
Thicknesses of the flyer plate (hf) and the sand sample (hS) are hf = 2.5 cm, hS = 3.5 cm (a-b) and 
hf = 1.5 cm, hS = 2.5 cm (c-f). The velocities of impact, U0, in km/s for Figs. 3(a-f) are 0.5 (a); 1 
(b); 3 (c); 5 (d); 7 (e), and 9 (f). The calculation is conducted in adaptive grids with the combined 
computational domain (flyer plate plus target) rescaled back for the sake of visualisation to 
the initial domain as shown in Fig. 3. The free and contact interfaces in these calculations are 
Lagrangian and internal nodes – Eulerian (see [29] for details). For simulation of the flyer 
plate, the viscoelastic model [17] has been used with the material constants for copper taken 
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from  [13]. Snapshots of the density and pressure profiles are shown at the same time points 
for each of the impact velocities (the time marks are shown above each of the graphs). Tracing 
the pressure and density states behind the shock front in sand, it is seen that when pressure is 
rising, density is first increasing in the pressure range below 5 GPa (plots in Fig., 3(a-c)) and 
then decreasing at further increase of pressure (plots in Fig., 3(d-f)). This behaviour agrees 
quite well with the experimental behaviour shown in Fig. 2, following the trend of the initial 
conventional compaction path superseded by the anomalous PTE Hugoniot. 
 
 
5.3 Shock compression calculations using the CTH implementation  

Calculations with CTH using the present implementation require specification of the sand 
material in the both sections of the input deck associated with the EP and EOS blocks. The 
corresponding specification in the ‘eos’ section refers to VE EOS subroutines that are 
substituted in the present implementation by the subroutines described in the previous 
section of the report.  
 

 
Figure 4. Comparison of the CTH calculations in the underlying (a) and control (b) set-ups with the 

profiles calculated using the code [4, 7] (c) 

 
This reference forces CTH to retrieve information about any material from the EOS_data 
material database associated with the VE model (for example, in a fragment of the input deck 

UNCLASSIFIED 
20 



UNCLASSIFIED 
DSTO-TR-2728 

below, the ‘pmma’ material is referred to). Because of the substitution this information cannot 
actually be utilized when the implementation is active with the exception of the first three 
constants. In fact, only these three constants are important for the corresponding 
implementation subroutines in order to start proper processing of the EOS input and 
initialisation blocks. After processing of the EP input block, the whole set of constants is 
determined and correctly placed for subsequent calls of the EOS modules. These three 
constants taking the roles of the mixture density, and densities of the gaseous and solid phases 
are ‘R0’, ‘T0’, and ‘CV’, respectively, referring to the VE input nomenclature. The processing 
of the EP input data is conducted in quite a conventional way in CTH through reference to the 
present model name, ‘VER’. Specification of one of the constants, namely, the material density 
(unless this density is coincident with the one from the dataset called by the material name 
specification), is mandatory, whereas the whole set of the EP input constants is summarised in 
the VP_data file. This data set is taken from the rows of the VP_data file identified by the 
material name and it contains 37 constants described in Subsection 4.1.3. 
 
For example, assuming that the material’s ‘2’ name is ‘SAND’, and its initial density ρ0 = 0.4 
g/cm3, the required fragment of material specification in the input deck for the material 
described by the present two-phase model should appear as follows 
 
eos 
   mat2 ve pmma R0=0.4 T0=0.00121107266 CV=2.65 
endeos 
 
epdata 
 matep 2 VER SAND RHO = 0.4 
endepdata 
 
To remind, the initial density of the air ρ0g = 0.00121107266 g/cm3 is actually calculated on the 
processing stage of the EP input block and specified here only for the correct initial processing 
of the EOS input and initialisation blocks. Therefore, this density is calculated beforehand and 
used as the datum ‘T0’ above. For the same purpose, the initial density of the solid phase ρ0S = 
2.65 g/cm3 is also taken from the datum ‘CV’ above. It should be noted that this twist is 
unnecessary if proper access to the EOS block is available. In that case, new EOS name can be 
specified and used for the present model. Therefore, the model could be realised with its own 
specifications instead of using the name, VE, of the subroutines substituted and the names of 
VE variables for substitution in the data set, when the relevant ‘eos’ section in the input deck 
is activated. 
 
The high-velocity plane impact set-up for CTH employs similar input conditions as in the 
previous calculation. The computational one-dimensional Eulerian domain is separated into 
two zones: i) a flyer plate with the thickness hf of either 2.5 or 3.5 cm depending on the impact 
velocity, similarly to the previous subsection set-ups; and ii) the sand sample zone (a target) 
with the thickness hS of either 1.5 or 2.5 cm, respectively. Due to the purely Eulerian nature of 
the code, the boundary conditions require more attention than in the previous case. In the 
CTH simulations below, the left boundary condition was usually taken as the inflow condition 
that enabled the rarefaction wave from the rear side of the flyer plate to come to the projectile-
target interface later than in the case of the free surface condition. However, this choice did 
not affect the density value behind the shock front. This point has been checked out by special 
control calculations with the free surface conditions.  
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Figure 5. CTH calculations of the density profiles in the porous sand at various impact velocities 

 
In the CTH calculations, a model for the description of the copper material of a flyer plate is 
the Steinberg-Guinan-Lund model [3]. Results of comparison of the CTH calculations using 
the present implementation at U0 = 1 km/s with the set-up described above (a), with a control 
set-up with the free surface boundary conditions (b), and the calculation from the previous 
subsection (c) are shown in Fig. 4. It is seen that all these calculations result in nearly identical 
density profiles in the sand sample. The pressure profiles for the same boundary conditions 
(Figs. 4(b) and (c)) are close. It should be kept in mind the visualisation convention in Fig. 4(c), 
where the external free boundaries are rescaled back to the initial positions with the contact 
interface having changed its position between the external free boundaries by t = 12 μsec, 
whereas the CTH visualisation in Figs. 4(a-b) refers to the actual boundary positions within 
the fixed grid. The observed pressure jump at the projectile-target interface is associated with 
the strength effects because the stress equilibrium at the interface is satisfied only for the 
longitudinal component of stress. 
 
The density profiles from the CTH calculations using the present model implementation at the 
same impact velocities as in the previous subsection (U0 in km/s are 0.5(a); 1(b); 3(c); 5(d); 7(e); 
and 9(f)) are summarized in Fig. 5 for the boundary conditions of the underlying set-up (as 
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that of Fig. 4(a)). When comparing the corresponding profiles from Figs. 3 and 5, it is seen that 
the profile features in sand such as the peak density and the character of ramping are 
practically identical for these two series of calculations. Thus, this comparison gives us a 
confidence in the adequacy of the present numerical realisation within the CTH 
implementation framework. 
 

 
Figure 6. Summary of the Hugoniot densities calculated with CTH using the present model 

implementation 

 
The numerical data summarised from Fig. 5 are drawn in Fig. 6 as a single graph with the 
straight lines characterising the trend of the behind-shock density change with the pressure 
rise from left to right. This trend shows the physical adequacy of the implementation (within 
the accuracy of chosen EOS), when comparing the calculated behind-shock (Hugoniot) 
densities, following a composite Hugoniot from the compaction pressure-density curve 
superseded by the anomalous PTE Hugoniot, which correlates quite well with the Hugoniot 
response observed experimentally [11] (see Fig. 2).  
 
 
5.4 Shock compression calculations using models available in CTH 

The CTH calculations using the present model can also be compared with CTH calculations 
employing porous material models available in the CTH model database [3]. The CTH models 
that may associate most closely the thermodynamic states of a material with EOS 
experimental data are those of the SESAME family [30]. The SESAME EOS database describes 
the material state response in a tabulated form with necessary interpolations between the state 
database nodes. However, a disadvantage of this approach is that any out-of-node state is a 
calculated extrapolation of the tabulated data and, if not in close proximity to the table data, 
this approximation relies on extrapolation algorithms rather than on physics laws. A relevant 
model from the SESAME database is the DRY SAND model (in fact, a table extrapolation) 
complemented with the P-alpha EOS reduction rule [3] used for the porous material 
description. Because this description extrapolates a behaviour between the EOS data nodes 
tabulated by experiment, it is expected that the pressure density abnormalities are somewhat 
covered by the DRY SAND model prediction. The second model is the P-λ model by Grady 
that describes the non-linear response using a composite EOS in a kinetic manner managed by 
the compaction parameter λ [31]. 
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Figure 7. Comparison of the numerical results for the present model (a) with those for the DRY SAND 

(b) and P-λ (c) models of CTH 

 
The pressure and density profiles taken from the previous subsection and calculated using the 
present two-phase model at the impact velocity of U0 = 1 km/s are shown in Fig. 7(a). These 
calculations are compared with the profiles within the same set-up, which are calculated using 
the DRY SAND model (Fig. 7(b)) and P-λ model (Fig. 7(c)). It is seen that the tabular EOS 
response based on the SESAME approach in Fig. 7(b) manifests an oscillating pressure profile 
behind the shock front fed into the pressure pulse propagating back to the flyer plate. In turn, 
the response obtained with the physics-based P-λ model in Fig. 7(c) results in a quite similar 
pressure profile in the flyer plate when compared with that of the present two-phase model in 
Fig. 7(a). The pressure amplitude, however, is obtained from the model-specific EOSs, 
therefore, it is not expected to be identical for these models. At the same time, the density 
profiles in sand are quite different for all the three models. 
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Figure 8. Trend of the Hugoniot densities versus pressure calculated with the DRY SAND model 
 
The density profiles calculated with CTH using the DRY SAND model at the same impact 
velocities as in the previous subsections are summarised in Fig. 8 in the same manner as in 
Fig. 6. It can be seen that the tabular character of the SESAME EOS, resulting in a somewhat 
oscillating response, transmits this response to the density trend at high pressure. However, in 
the middle of the pressure range the correct abnormality trend still remains, namely, the 
maximum density is reached at the impact velocity of U0 = 3 km/s (the third graph from the 
left in Fig. 8), corresponding to the peak pressure of approximately 5 GPa (see Hugoniot data 
in Fig. 2). 
 

 
Figure 9. Trend of the Hugoniot densities versus pressure calculated with the P-λ model 
 
The next model prediction with a regular EOS such as that of the P-λ model does not 
demonstrate any abnormality. The corresponding CTH results are shown in Fig. 9 and the 
density trend is quite conventional with the density and pressure increasing concordantly. 
Obviously, this trend does not correlate with the experimental data shown in Fig. 2. 
 
 
 

6. Buried Charge Modelling  

In the mine blast experiments, total momentum is often recorded by using a momentum-
measuring device (e.g. pendulum). However, the major contribution to the total momentum is 
due to loading by the detonation products, while the major contribution to the stress pulse 
transferred to the target is due to the ejecta impact. Therefore, in order to take into account the 
highly dangerous, although short-time ejecta contribution, the soil ejecta formation and 
momentum transfer by the ejecta to a target should be considered. As mentioned in the 
Introduction, the velocity-density distribution through the ejecta thickness is the decisive 
information for evaluation of this contribution. This information, however, is not readily 
available. The peak stress in the stress pulse travelling through the target is associated with 
the impact velocity of the soil ejecta. The length of the pulse and the pulse fluctuations could 
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be obtained from the velocity-density information. Nevertheless, as a first step in the 
evaluation, the velocity can accurately be estimated from high-speed video or pulse x-ray 
shots. CTH calculations in the present section are aimed at analysis of the experimental 
observations made with the pulse x-ray experiments [12] on the explosion of 100g C4 charges 
buried under a layer of sand. 
 
 
6.1 The problem statement 

The experimental results [12] are simulated within the axi-symmetrical two-dimensional set-
up. The experiments [12] deal with a cylindrical volume of sand of approximately 88 cm in 
diameter and 70 cm in height that is not confined at the upper side of the volume (i.e. it is in 
the contact with air) and is contained laterally and at the bottom by a steel case. The present 
numerical set-up considers one half of the whole experimental set-up in the radial direction 
away from the symmetry axis with rigid boundary conditions sidewise and at the bottom. 
20 cm of air space is within the chosen computational domain. The observation area subject to 
graphical output is 40 x 40 cm with the centre at the intersection of the symmetry axis and the 
air-sand free surface interface. This observation area is marked by the square in the set-up 
graph of Fig. 10 for the whole set-up geometry (the actual observation area in the calculation 
set-up is 20 x 40 cm), which approximately corresponds to the experimental observation area 
[12].  
 
Two Depths Of Burial (DOB) for the High Explosive (HE) charges are considered in 
agreement with the buried charge set-ups of [12]: DOB = 3 cm and DOB = 8 cm. The C4 charge 
was simulated using the HE burn model [3] under JWL EOS for Composition C-4 (see [3] for 
details) with the JWL database choice of constants. The charge was selected to be cylindrical 
with a diameter of 6.4 cm and a height of 2 cm [12]. Two charge initiation configurations have 
been considered in [12] with detonation either (i) at the top or (ii) at the bottom of the charge. 
As found in [12], the first option generates a venting effect at the soil interface rendering this 
set-up inconclusive, whereas the latter is free of such limitations. Therefore, only the charge 
initiation configuration (ii) was considered in the present numerical set-ups. To approximate 
the experimental set-up the charge was encased in a 1 mm thick Nylon case described with a 
standard elasto-plastic model (von Mises criterion is used for the plastic flow simulation) with 
the yield limit of 500 MPa and the ‘NYLON’ SESAME EOS [3]. Similarly to the experimental 
set-ups, the charge was boosted by a 5 x 10 mm HE cylinder detonated from its lowest point at 
the axis of symmetry in the numerical set-up.  
 
Material constants for the sand material modelled by the present CTH implementation are the 
same as those from the preceding subsection with the only adjustment to the fused quartz 
density value of ρ0S = 2.2 g/cm3. This type of solid phase for calculations in this section is 
chosen because the EOS in the present case should cover a wider range of pressures, including 
those occurring at the rarefaction. Therefore, the Hugoniot shift to the higher density area 
seen in Fig. 2 might not be as critical for this porous material with a relatively low porosity 
opposed to the high porosity sand analysed at compression in the previous section. The choice 
of yield limits Y1 and Y2 is somewhat artificial because the yield limits are related only to the 
solid constituent and are not generally associated with the porous mixture. This choice was 
quite obvious in the preceding section because only the shock compression behaviour was 
considered and the yield limits were associated with the deformation (crush) of solid grains. 
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The material densification can potentially be described by the compaction kinetic fitted at 
different modes of loading. Namely, in the case of cyclic loading and unloading of the porous 
material, the compaction kinetic, ψ, should be fitted by an analysis of solutions of (21) for 
specifically designed loading-unloading tests. Thus, this kinetic plays a key role in the 
analysis of this sort of problem. In the present work, we are forced to use the compaction 
kinetic fitted only to the compression mode of loading. 
 

 
Figure 10. Schematic of the Buried Charge set-up 
 
Therefore, we are trying to compensate the gap in determination of the compaction kinetic for 
this material, which significantly contributes to the behaviour of the soil ejecta, by a variation 
of the yield limits. In doing so, we assume that the behaviour of the porous material at 
unloading can be compensated by the deformation of the solid constituent, which is a very 
rough assumption. Several CTH runs have been conducted with various yield limit values at 
compression and tension, which are listed in Table 1. For completeness, even though they are 
unrealistic, the set-ups with a high strength at tension are included in the Table as well. 
 
The initial average density of sand for all the cases calculated in this section is ρ0 = 1.57 g/cm3, 
that corresponds to an average initial soil density in the tests [12]. The same porous material 
models from the CTH material model database as in the previous section have been selected 
for comparative calculations and listed in Table 1. As a reminder, the models are: the DRY 
SAND model from the SESAME EOS family with P-alpha model for the porosity simulation 
and the P-λ model by D. Grady [31].  
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Table 1. Modelling set-ups and yield limit values for the implemented model 

N Compression Tension (p < 0) 
 Y1, MPa 

( 1 =10–2s–1) 
Y2, MPa 

( 2 =103s–1) 
Y1t, MPa 

( 1 =10–2s–1) 
Y2t, MPa 

( 2 =103s–1) 
 DOB = 8 cm 
Run1 37.5 150 37.5 150 
Run2 10 40 10 40 
Run3 37.5 150 10 40 
Run4 DRY SAND model [3] 
Run5 P-Lambda model [3] 
 DOB = 3 cm 
Run6 37.5 150 37.5 150 
Run7 10 40 10 40 
Run8 37.5 150 10 40 
Run9 DRY SAND model [3] 
Run10 P-Lambda model [3] 
 
Von Mises criterion of the traditional elasto-plastic model has been used for the DRY SAND 
runs with the yield limit of 10 MPa and for the P-λ model with the yield limit of 500 MPa. 
These yield limit values provide the best fit between calculation results and the present 
experimental data within a reasonable yield limit range for quartz. 
 
Table 2. Summary of the experimental data [12] 

N Time 
(μs) 

DOB 
(cm) 

Base width 
(cm) 

1/3 width 
(cm) 

2/3 width 
(cm) 

Bubble height 
(cm) 

12-1 230.9 8 19.9 13.0 9.4 2.9 
12-2 301.1 8 22.9 14.5 9.8 4.3 
13-1 351.0 8 27.9 16.1 11.1 5.2 
13-2 401.1 8 29.1 16.7 11.9 6.2 
14-1 451.0 8 32.8 17.7 11.8 6.9 
14-2 526.1 8 31.1 17.6 12.4 8.2 
16-1 100.8 3 17.3 11.5 7.8 6.5 
15-1 100.9 3 17.7 12.3 9.8 8.4 
17-1 125.9 3 19.9 13.1 10.1 8.8 
16-2 201.1 3 22.0 17.3 13.8 16.4 
17-2 201.1 3 24.6 17.3 14.3 16.5 
15-2 201.9 3 24.2 20.7 18.5 19.2 
 
The experimental results [12] are summarised in Table 2 showing the basic shape 
characteristics of sand ejecta for the two series of tests with DOB = 8 cm (3 tests with 2 
snapshots for each test) and DOB = 3 cm (also 3 tests with 2 snapshots per test). The 
geometrical parameters taken from the x-ray shots are somewhat subjective but the Table is 
useful to see the test consistency and to evaluate the general appearance and velocity of the 
soil ejecta. 
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6.2 Calculations for Large Depth of Burial  

The first series of calculations (runs from 1 till 5 in Table 1 that are further referred to as Run1-
Run5) deals with identical mesh set-ups for the whole group of the five with DOB = 8 cm. This 
depth of burial is characteristic for conditions of the camouflet blast where the blast products 
are contained underground during the ejecta formation. 
 

 
Figure 11. CTH calculation of the sand ejecta using the present model with parameters for Run1 
 
Numerical results of the first calculation from this series (see Table 1), Run1, are shown in Fig. 
11 at times approximately corresponding to those from the experimental observations shown 
in Table 2. It is seen that the material strength of the solid constituent equally high at tension 
and compression, which is approximately correspondent to that of non-porous quartz, has a 
significant and unrealistic constraining effect on the soil expansion. It is clear that the strength 
properties at tension should, at least, somehow differ from those at compression. 
 
As mentioned in the earlier comments on Table 1, the compaction kinetic fit should, in fact, be 
responsible for the difference in the material compressibility of the grained porous sand at 
compression and at tension. Because the compaction kinetic selected for the compression case 
was not adjusted to the tension conditions in this work, the next step in the material 
properties adjustment was reduction of the material strength for the solid constituent.  
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Figure 12. CTH calculation of the sand ejecta using the present model with parameters for Run2 
 
For analysis of the influence of the strength reduction, the next calculation from Table 1, Run2, 
is conducted with the conditions of low yield limit at both compression and tension. From the 
results of this run, we can observe an extension of the soil ejecta both at the ejecta base and 
upwards resulting in a significant increase of the bubble height when compared with the 
previous set-up. Results of this modelling using the present implementation are summarised 
in Fig. 12, similarly to Run1 in Fig. 11.  
 
For completeness of choice of the yield limit variations, the last option calculated within this 
series is calculation Run3 (Table 1) with high yield limits for the solid constituent at 
compression corresponding to the set-up of Run1 and the low yield limits at tension 
corresponding to the set-up of Run2. Numerical results for this run are summarised in Fig. 13 
similarly to the previous cases. 
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Figure 13. CTH calculation of the sand ejecta using the present model with parameters for Run3 
 
Wrap up calculations of this series, Run4 and Run5, have been conducted with CTH using the 
material database models employing the DRY SAND model based on the SESAME EOS and 
the P-λ model. Corresponding numerical results are summarised in Figs. 14 and 15, 
respectively. The P-λ model results describe shapes of the ejecta bubble quite poorly and, 
therefore, only 3 snapshots are shown in Fig. 15 for comparison with the numerical results 
obtained with the other models.  
 
Analysing the CTH results obtained with the present implementation (Figs. 11-13), we can see 
that the case of Run1 with very high constraining effects in Fig. 11 and the case of Run2 with 
significant relieving effects in Fig. 12 are separated by the case for Run3. When comparing the 
Run3 case (Fig. 13) with that of Run1 (Fig. 11), it is seen that the high yield limits at tension 
(with the same yield limits at compression) significantly affect the bubble height. At the same 
time, when comparing the Run3 case (Fig. 13) with Run2 (Fig. 12), it is seen that with the 
increase of the yield limit to the high values at compression (with the same yield limits at 
tension), the bubble height is almost unaffected and the base size is slightly restrained.  
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Figure 14. CTH calculation of the sand ejecta using the DRY SAND model (Run4) 
 

 
Figure 15. CTH calculation of the sand ejecta using the P-λ model (Run5) 
 
In order to compare the results of the present series with the experiments, we superimpose the 
calculated external ejecta contours from Figs. 11-15 with the experimental snapshots [12] at the 
late stages of the ejecta formation. The results for the whole set of runs, Run1-Run5 (Table 1), 
are summarised in Fig. 16 (corresponding contours of the CTH calculations are referred to by 
the run names in each frame of Fig. 16). From the comparison, it is seen that the numerical 
results for Run2, Run3, and Run4 are in reasonable agreement with the experiment. The 
constraining effect seen in the Run1 graphs seems to be unrealistic, and choice between Run2 
and Run3 can be done only after the appropriate fitting of the compaction kinetic which 
would also describe the unloading behaviour of the material.  
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Figure 16. Comparison of experimental snapshots at late stage with the CTH results 
 
The results of Run2 are drawn versus all available experimental snapshots in Fig. 17. It can be 
seen that the CTH calculation, employing the present implementation and selected 
parameters for the Run2 set-up, provides very good agreement with the experiment. It is 
interesting to note that all available model database calculations provide higher ejecta velocity 
than that observed in the camouflet blast experiments (with a fairly small excess, though, for 
the DRY SAND model). At the same time, CTH calculations (not described here) using the 
present implementation with even lower yield limits do not result in a further increase of the 
ejecta velocity. 
 

UNCLASSIFIED 
33 



UNCLASSIFIED 
DSTO-TR-2728 

 
 
Figure 17. Comparison of the Run2 calculations with the experimental snapshots [12] 
 
 
6.3 Calculations for Small Depth of Burial  

When depth of burial decreases, the soil expansion regime changes from a confined 
underground blast (the camouflet blast) to soil ejection accompanied by an outburst of the 
detonation products through the soil surface. However, when the impact effect of the ejecta on 
a target is significant, the particles and detonation products are still relatively close to each 
other. Therefore, velocity equilibrium between products and particles can be assumed for this 
case, which allows us to describe the ejecta behaviour using the same models as in the 
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previous subsection. The outburst regime realised at DOB = 3 cm corresponds to the next 
characteristic mesh set-up selected for the second series of CTH calculations. 
 

 
Figure 18. CTH calculation of the sand ejecta using the present model with parameters for Run6 
 
Turning to the experimental data summarised in Table 2, the small DOB data at DOB = 3 cm 
are grouped around the following three times, 101 μsec, 126 μsec and 201-202 μsec. Therefore, 
plots for CTH calculations using the set-ups of Runs6-Run10 are only shown at these three 
times.  
 

 
Figure 19. CTH calculation of the sand ejecta using the present model with parameters for Run7 
 
As in the previous subsection, we start CTH analysis using the present implementation with 
the same three groups of the yield limit parameters. Numerical results for these parameters 
are obtained with the CTH runs, Run6, Run7, and Run8. Graphic representations of these 
results are shown in Figs. 18, 19, and 20 for Run6, Run7, and Run8, respectively. 
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Figure 20. CTH calculation of the sand ejecta using the present model with parameters for Run8 
 
Similarly to the previous calculation series, the drastically different ejecta shape among the 
results obtained with the CTH calculations employing the present implementation (Figs. 18-
20) is observed in Fig. 18 for the case of the high yield limits at both compression and tension. 
It is interesting to note that the apparent ejecta shape appears to contradict the interpretation 
from Run1 where high strength at tension results in low bubble height. However, this 
apparent mesh contour for the porous material should be looked at in conjunction with the 
density plots, because the present model considers a two-phase mixture that may, for 
example, contain a prevailing volume of air. 
 

 
Figure 21. Density distribution inside the ejecta for Run6 calculation 
 
Indeed, when plotting the density distribution for Run6 in Fig. 21 along with the material 
contours, it can be seen that the high-density (low-porosity) material is concentrated mainly at 
the lower boundary of the porous material and directly above the detonation products 
pushing the ejecta. Therefore, the actual height of the bubble carrying the prevailing mass is 
much smaller and it is adjacent to the upper boundary of the detonation products. At the 
same time, as seen from Figs. 19-20, the prevailing masses of the ejecta for Run7 and Run8 are 
concentrated in very narrow zones. Thus the ejecta contours for these two runs approximately 
correspond to the mesh contour of the ejecta drawn in Figs. 19 and 20. 
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Figure 22. CTH calculation of the sand ejecta using the DRY SAND model (Run9) 
 
The final two CTH calculations of the present series were conducted with the DRY SAND and 
P-λ models from the CTH material database. The numerical results of these two runs are 
summarised in Fig. 22 (Run9) and Fig. 23 (Run10), respectively. 
 

 
Figure 23. CTH calculation of the sand ejecta using the P-λ model (Run10) 
 
Similarly to Run7 and Run8, the calculation with the DRY SAND model, Run9, has the ejecta 
mass concentrated in a very narrow zone. Therefore, the ejecta contours in this case also 
correspond to the mesh boundary drawn in Fig. 22. The P-λ model calculations shown in 
Fig. 23 result in an uncertain shape of ejecta and this case will be analysed below after 
comparison with the experiment. 
 
Referring to the experimental data listed in Table 2, it can be seen that out of the 3 tests of this 
series (Shots 15, 16, and 17), the results of Shots 16 and 17 are more consistent to each other 
than the results of Shot 15. Indeed, the bubble height for snapshot 15-1 from Table 1 is close to 
that for snapshot 17-1, but at a significantly earlier time point. While, the bubble height for 
snapshot 15-2 essentially predominates the average bubble height at approximately the same 
time points from Shots 16 and 17. 

UNCLASSIFIED 
37 



UNCLASSIFIED 
DSTO-TR-2728 

 
 
Figure 24. Comparison of experimental snapshots at late stage with the CTH results 
 
Therefore, for comparison of the numerical results at a late stage of the soil expansion 
observed in the experiments we take the x-ray snapshot 16-2 that is quite similar to the 
snapshot 17-2. The comparison results are shown in Fig. 24 with run identifiers for the 
corresponding CTH calculation in each frame. From the comparison it might appear that the 
bubble height of Run6 agrees better with the experiment. However, as commented above in 
Fig. 21, the two-phase nature of the modelling should be remembered, whereby, the 
predominating mass bearing contour is drawn in the frame corresponding to Run6 together 
with the external ejecta contour. Comparison of this part of the ejecta with the experimental 
contour shows that the constraining effect of the high yield limits for the case of Run6 is also 
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present for the small DOB calculations. Thus, similarly to the previous series of calculations, 
the last two runs with the low yield limits at tension (Run7 and Run8) produce more adequate 
results when compared with the experimental data. 
 
Another candidate for a good description of the bubble height is the P-λ model calculation of 
Run10. However, when referring to the density distribution of the P-λ model calculation 
shown in Fig. 25, the major mass of the ejecta is again concentrated in the lowest part of the 
leading piece of the soil ejecta material similarly to the case of Run6. The corresponding mass 
bearing portion of the calculated ejecta plotted along with the external contour of the ejecta is 
shown in the last frame of the comparison graph in Fig. 24. Thus, the contour containing the 
major mass of the ejecta for this calculation describes the experiment in Fig. 24 more poorly 
than the similar contour for the case of Run6 criticised earlier. It could be argued that the fairly 
high yield limit value of 500 MPa selected for this calculation constrains the bubble height of 
the ejecta in the present case. However, when referring to the previous subsection calculations 
with this model (frame 5 in Fig. 16), it is seen that a reduction of the yield limit would result in 
an even larger discrepancy for that case shown in Fig. 16. 
 

 
Figure 25. Density distribution inside the ejecta for Run10 calculation 
 
Thus, from the comparison of the experimental snapshots with the CTH calculation results 
shown in Fig. 24, it is seen that Run8 results are reasonably close to the experimental bubble 
shape at a later stage of the soil expansion. When correlating the present model calculation 
plots with the yield limit input data from Table 1, it can be seen from Fig. 24 that a larger 
ejecta expansion in the middle section of the bell-shaped ejecta for small DOB is likely to be 
associated with a higher strength at compression.  
 
Similarly to the large DOB case in the previous subsection, we summarise all available 
experimental snapshots for the small DOB with results of Run8 at approximately the same 
time points in Fig 26. It is seen that the CTH calculation using the present implementation 
with the Run8 parameters describes the experimental data (specifically, Shots 16 and 17) quite 
well. As commented earlier, possible inconsistency of Shot 15 should be kept in mind. 
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Figure 26. Comparison of the Run8 calculations with the experimental snapshots [12] 
 
It should be noted that even good agreement of the ejecta shape with the experimentally 
observed contours does not guarantee a good prediction of the momentum transfer to a target. 
To illustrate this point, the numerical results of two runs for the small DOB at t = 50 μsec (one 
of the runs with the present model, Run6, and Run9 with the DRY SAND model) for mesh, 
density, pressure, and velocity magnitude are superimposed onto 4 single plots in Fig. 27. The 
left half of each graph corresponds to the calculation with the DRY SAND model and the right 
half represents the results calculated with the present implementation. 
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Figure 27. Comparison of the DRY SAND model results (the left half of the plots) with the present 

model implementation results (the right half of the plots) with DOB = 3 cm at t = 50 μsec 
(Run9 and Run6 results) 

 
It can be seen that at times shown in the graph the velocities of ejecta are approximately the 
same from both the velocity fringes and contour positions. The contour shapes are quite 
similar at this moment of time for both cases, but the density distributions differ dramatically 
(the same point was also illustrated by the one-dimensional simulations of the previous 
section). The sand density is nearly constant through the ejecta thickness for the DRY SAND 
model with the SESAME EOS, whereas the material compaction in the present model is 
performed in a kinetic manner demonstrating a significant mass gradient through the ejecta 
thickness (as also observed in the one-dimensional calculations). Thus, the momentum 
transfer can be significantly overestimated with the tabulated SESAME approach. At the same 
time, model preference cannot be established before verification of the numerical results with 
experimentally measured through-thickness density distribution or with recorded momentum 
appropriately resolved in time has been conducted. Appropriately designed experiments 
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should allow measurement of the momentum sensitivity to target parameters or to record 
directly a pulse in the porous sample by a gauge. 
 
 
 

7. Conclusions 

As a further development of the basic CTH implementation capability established in DSTO 
earlier (see [5]), the present work describes another CTH implementation of a two-phase 
porous material model [4]. The implemented model is capable of describing the anomalous 
behaviour of highly porous materials, keeping the formalism consistent with that of the 
irreversible extended thermodynamics (e.g. [17]). The model is also capable of describing the 
phase transition effects and strain rate elasto-plastic effects. 
 
The present implementation is consistent with the CTH user implementation interface [3, 19]. 
This means that 1) the implementation employs the mathematical model presented as the 
conservation laws with a set of constitutive equations evolving along the particle trajectory; 
and 2) the stress response is decoupled in volumetric (pressure) and deviatoric (shear stresses) 
responses. The implementation is realised in the present work for the case of porous materials 
and the implementation flowchart is briefly outlined in accordance with the code structure 
described in the available literature. 
 
The model implementation has been verified for a highly porous silica material against the 
available Hugoniot data [11] and against calculations using an in-house code [4, 6, 7]. The 
CTH results correlate well with the calculations and with the anomalous behaviour of the 
material observed in the literature. Driven by the requirements of the counter-mine and 
counter-IED project, the literature data [12] on the explosion of a 100 g C4 charge buried under 
a layer of sand have been simulated with the present model. The CTH results demonstrate a 
good description of the experimental data by accurately following the soil ejecta shape.  
 
Results of the present report have demonstrated that an advanced CTH implementation 
capability for multi-phase models has been established in DSTO. However, use of the 
implemented models concurrently and an extensive use of the extra variables in the model 
implementation will require even more intrusive implementation in the ERB part of the code 
along with the possibility of routine updating of extra implemented models in the EOS part of 
the code (this capability is currently available only in the EP part of the code). This access will 
also be critical when sharing implemented models within joint projects. 
 
Addressing the accuracy of the description of the target response to the ejecta effects, further 
validation is necessary, which would allow one to evaluate the density and velocity 
distributions through the ejecta thickness and compare them with experiments. This can only 
be done by validation against specially designed experiments. 
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The constitutive equations and equations of state have been fitted in order to describe literature data. Numerical  illustrations in the 
report demonstrate agreement of the calculation results with the anomalous behaviour observed in the literature for a highly porous 
sand at shock compression and a good description of the experiments available in the literature on the explosion of a sand-buried 
charge. 
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