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That in turn significanly improves the detection compared to the traditional cell-averaging
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Optimal Detection in the K-Distributed Clutter
Environment -- Non-Coherent Radar Processing

Executive Summary

In the maritime environment, radar detection unavoidably needs to deal with
undesired signals, primarily sea clutter (echoes from the sea surface). How to detect
target signals, especially relatively weak ones, against the clutter is challenging.

Optimal detectors, based on the Neyman-Pearson principle, that maximise the
probability of detection for a given false-alarm rate are the most interesting detectors to
the radar community. Their derivation depends on the statistical models of both the
clutter and the target. In a recent paper, ‘Optimal coherent radar detection in a K-
distributed environment” we have discussed the problem of optimal coherent
detection. This report focuses on the non-coherent detection of Gaussian targets
(Swerling II targets) in the compound K-distributed clutter environment.

This report makes the following three contributions.

First the optimal detector for multi-look non-coherent detection of Gaussian targets in
the compound K-distributed clutter is derived. The optimal detector derived is shown
to be the well-known square-law detector. This is because the clutter undergoes a
Gaussian random process during the multi-look processing period (i.e., the multi-pulse
processing period), as the slowly-varying component of the compound clutter remains
unchanged during the period, according to the assumption. Although the derived
optimal detector is not new, the derivation itself has a guiding meaning. As the
detector has been rigorously derived for the first time using the Neyman-Pearson
principle, it means that no other detectors exist which would perform better for the
given conditions. Other detectors, such as the multi-look amplitude detector, the multi-
look log detector, and the like are not optimal and inherently result in some detection
loss.

Secondly we have shown that for temporally correlated clutter, the use of a multi-look
whitening process provides a target gain and improves the detection. The higher the
correlation, the larger the target gain. The target gain comes from the difference
between the spectrum of the correlated clutter and the spectrum of uncorrelated target
signals (a non-uniform spectrum against a uniform spectrum), providing a second
characteristic (in addition to the intensity) for discriminating the target from the clutter.
On the other hand, if both the clutter and the target signals are individually
uncorrelated (the cross-correlation between the two is always zero), each of them has a
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uniform spectrum, and there is only one characteristic (intensity) that can be employed
in the detection. Therefore the event of the uncorrelated Gaussian targets embedded in
the uncorrelated compound clutter represents the worst scenario in terms of detection.
If the correlation of the target signals is the same as the correlation of the clutter, a
treatment of de-correlation leads to the same processing for the uncorrelated target in
the uncorrelated clutter.

Lastly, spatially correlated non-Gaussian clutter may be able to provide some constant
false-alarm rate (CFAR) gains. The CFAR gain is dependent on the estimate of the local
mean. For this analysis we have examined the use of the linear autoregressive
technique and derived the optimal weights for estimating the local mean of clutter. The
autoregressive estimation is optimal under the linear assumption and better than the
traditional cell-averaging estimation. The optimal estimation (under the linear
assumption) of the clutter texture has in turn resulted in a further significant detection
improvement (a few dB) for highly spatially correlated K-distributed clutter compared
to the traditional cell-averaging estimation.

This work was carried out in support of the ADF’s Air 7000 Project.

Reference
Dong, Y. (2012), "Optimal coherent radar detection in a K-distributed clutter
environment", IET Radar, Sonar and Navig., 6(5), 283-292.
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1. Introduction

In a journal paper, ‘Optimal coherent radar detection in a K-distributed clutter
environment’ (Dong 2012), we have proposed an optimal detector for coherent detection
against K-distributed clutter. This report develops optimal and near optimal detectors for
non-coherent detection.

In the past, radar systems had relatively low resolution capabilities, and the Gaussian
clutter assumption was a valid model for the clutter. With the advances in radar
technology, the resolution capabilities of radar have been greatly improved in recent years.
Clutter collected using high resolution radar systems exhibits non-Gaussian behaviour.
The associated problem of optimal detection in a non-Gaussian background remains to be
solved. The compound K-distribution, for instance, is a non-Gaussian distribution
commonly used to model radar sea clutter; one of the milestone findings in radar clutter
analysis and research in resent years (Ward et al. 2006).

Researchers have been studying the optimal coherent detection of radar targets embedded
in compound-Gaussian clutter for many years (Sangston et al. 2010; Sangston and Gerlach
1994; Sangston et al. 1999; Gini et al. 1999; Farina et al. 1997; Gini et al. 1998). While the
matched filter is optimal for Gaussian clutter, the paper (Dong 2012) shows that the
proposed optimal detector for K-distributed clutter significantly improves the detection
compared to the matched-filter if clutter is highly spiky (i.e., K-distributed clutter with a
small shape parameter). Therefore, there seems a need to investigate the optimal non-
coherent detection against the K-distributed clutter.

Non-coherent detection against K-distributed clutter has received equal attention.
Armstrong and Griffiths (1991) studied detection of fluctuating targets in spatially
correlated clutter, but their study focused on the performances of cell-averaging (CA), cell
averaging greatest of (CAGO), and ordering statistic (OS) constant false-alarm rate (CFAR)
processors and did not discuss the issue of optimal detection. Watts, Ward and Tough
studied CFAR loss and CFAR gains associated with the K-distributed clutter (Watts 1996;
Watts et al. 2007; Watts 1987). It has been found that for the compound Gaussian clutter,
such as K-distributed clutter, CA-CFAR can provide a CFAR gain, provided that the
texture of clutter (underlying mean) is correlated (Watts 1985). The higher the correlation,
the larger the CFAR gain. Watts (1985) thus proposed a concept of ‘ideal CFAR" which
means that if the exact mean of the clutter for the cell under test (CUT) is known or
estimated by other means, the best performance can be achieved. Based on this concept,
Buccuarelli et al (Bucciarelli et al. 1996) proposed to use the maximum a posteriori
estimation in the logarithm domain (LMAP) to estimate the local mean for the CUT. They
found that the performance of LMAP-CFAR outperforms CA-CFAR especially when the
correlation of the texture is high.

A pulsed Doppler radar, equipped with a single transmitter and a single receiver, usually
collects two-dimensional data, one dimension is time (separated by pulses) and the other
is range (separated by range bins). This kind of data is often referred to as multi-look data.
The associated detection problem is how to process this two-dimensional data to achieve
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the detection goal. Apparently the above studies of non-coherent detection only consider
the processing in the range domain.

Conte et al (1999) proposed a generalised likelihood ratio test (GLRT) model for the
optimal incoherent detection of Swerling II targets in the compound K-distributed clutter.

However the model assumes that for the H, hypothesis only the first portion of an
incoherent pulse train contains the clutter and target signal, and the second portion the
pulse train contains clutter only. This condition does not seem to be robust to an unknown
target location.

In this report we first consider the processing in the time domain. Different assumptions
for target signal and clutter lead to different designs of detection scheme in order to
achieve the optimal and near-optimal performance. This report considers Swerling II
model as the target model, i.e., target RCS is independent from pulse to pulse and varies
with Gaussian. For such a radar target, coherent detection is not appropriate, because
target signal’s phase varies randomly, and both target signals and clutter have a uniform
spectrum in the frequency domain. Often we need to detect the intensity of the target
signals. The intensity is enhanced by multiple look non-coherent integration. For Gaussian
clutter, the multi-look intensity averaging processing is optimal. However whether it is
still optimal for non-Gaussian clutter is remains to be answered. This report tries to derive
optimal and/or near optimal detector from the Neyman-Pearson principle (Kay 1998,
page 174).

The unwanted signals that need to be considered in the maritime environment include
echoes from the sea surface plus thermal noise of the radar receiver. In this report, the
unwanted signals are assumed to be represented by a compound K-distribution (this is
justified in Section 2). We derive optimal and near-optimal detectors based on the
Neyman-Pearson principle in Section 3. The performance of optimal and near optimal
detectors for temporally correlated clutter is also analysed.

Secondly we study the processing in the range domain. Specifically we consider in
Section 4 the non-coherent detection for the spatially correlated clutter. We use the
autoregressive (AR) technique to optimally estimate the texture of clutter. That in turn
significantly improves the detection compared to the traditional CA processing.

2. Justification of K-distributed Clutter

In a maritime radar surveillance environment, sea clutter has been verified, through
numerous trials, to fit with the compound K-distribution for most conditions (Ward et al.
2006; Crisp et al. 2006; Dong and Merrett 2010; Greco and Gini 2007; Farina et al. 1997).
Horizontally polarised higher resolution sea clutter may even have a heavier tail in its
probability density function (pdf) and fits better with other distributions, such as KA
(Watts et al. 2005), KK (Dong and Haywood 2007) and Pareto (Farshchian and Posner 2010)
distributions. This report assumes sea clutter to be K-distributed. The compound
K-distribution is composed of two components, a fast-varying component, referring to
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speckle and a slowly-varying component, referring to the underlying mean or texture. The
fast-varying component is a zero mean, unit variance complex Gaussian process
modulated by the slowly-varying component, whose intensity is gamma distributed
(Ward et al. 2006).

Thermal noise, according to its nature, is often modelled by a Gaussian random process.
The distribution of the sum of the K-distributed clutter and Gaussian thermal noise
unfortunately does not have closed-form. To overcome this, Watts (1987) has
approximated the combined distribution as a new K-distribution, by equating their
intensities and variances. In other words, the combined distribution of a K-distribution
with parameters of x4, (mean intensity) and v, (shape parameter) and a Gaussian thermal

noise with parameter ¢ (variance or mean intensity) is approximated as a new K-
distribution with parameters of x# and v . The new parameters x and v are determined
by equating the mean and the variance of the two distributions (Watts 1987). Through
numerical simulation, we found that this approximation provides very good agreement
between the theoretical and data distributions for a wide range of Gaussian signals from a
very weak thermal noise (very small signal-to-clutter ratio (SCR)) to very strong Gaussian
target signals (very large SCR) (see Appendix B for details).

Sea clutter data, whose true distribution is unknown, when received by a radar system
includes the thermal noise of the radar. Consequently the estimated mean and shape
parameters will automatically be for the combined distribution. Therefore, the undesired
signals considered in this report only have a single component, the combined compound
K-distributed clutter.

3. Optimal Detector for Non-Coherent Detection

3.1 Uncorrelated Clutter

In order to employ the Neyman-Pearson principle to indentify the optimal detector we
need to generate a statistical representation of the target embedded in the clutter
distribution. The mathematical analysis for the case under consideration, a Gaussian target
embedded in K-distributed clutter plus noise is provided in Appendix B.

Having approximated the distribution of Gaussian target embedded in K-distributed
clutter, we are now in a position to discuss the associated optimal detector for non-
coherent detection. The multi-look case means that multiple measures X[n], n=1,---,N,
with respect to pulse, for each range bin are available. We want to derive a detection
scheme which is optimal, i.e., the probability of detection is maximum for a given false-
alarm rate.

The Neyman-Pearson principle (Kay 1998, page 174) states that to maximise a probability
detection P, for a given probability of false-alarm, the detection threshold is based on the
likelihood test ratio of,
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p(x; H) ™
ﬂ = > 1
(X) p(X! HO) H<0 ( )

where H, and H, are null and alternative hypotheses of absence and presence of target

signal. We assume that,

(a) the clutter parameters, namely, the mean and the shape parameter, are known, or
can be estimated from the secondary data;

(b) during the multi-look sampling period the slow-component of the K-distributed
samples remains unchanged; and

(c) multi-look samples are independent (the correlated case is discussed later).

Since the distribution under H, is approximated by another K-distribution (see Appendix
B), the marginal probability density function (pdf) is (Sangston et al. 2010),

ool x"xin) g iz @

p(x;Hi)=I

Nz
where p(7) is the gamma distribution of the slowly-varying underlying component:

14

" exp(-br) (3)

b
p(r) = )

. v . . . .
where v is the shape parameter, b=—, u = E{| x|} is the intensity mean. The integral
u
gives,
Vi—N Vi+N

. — 2 2 p 2 P
o)A 0 )10 o

N
where N is the number of multi-looks and A= x"x = >'| x[n]|* . Finally we have,
n=1

INA() = INT(vg) ~InT(vy) + 2= 0 A 2t N Vot Ny 5
5
K, @/bA)-InK, ,(2/b,A)
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The likelihood ratio test (LRT) of (5) is a non-linear function of measure A and the design
of the optimal detector based on (5) is difficult as the pdf of In A(x) with respect to

measure A is unknown. Next we examine how the LTR of (5) behaves and consequently
construct a near-optimal detector.

Since the marginal pdf p(x;H,) is only a function of measure A, if we replace p(x;H,)
by p(z;H,), we find that the corresponding LRT of (5) remain unchanged, where
p(z;H,) is the pdf of multi-look K-distributed data given by (B6) in Appendix B, and

z=N"YN|x[n]|* = A/N. The advantage of using this replacement is that the pdf of
p(z;H i) can be plotted against zZ . In another word, the LRT is replaced by,

/1(2)2 p(Z, Hl) l-il

6
0z Ho) 1 ©)

One may verify (6) and (1) are identical, i.e., In A(x) = In A(z).

Figure 1 shows the LTR In A(z) varies against the measure z given parameters of v =1.2,
£#=1.0, N =10 and SCR=6dB. Initially, it seems difficult to understand the curve. For
instance, if one selects In4(z) =0 as a threshold (the selection of the threshold only
depends on P, ), then the optimal detector only declares presence of target when the

measure Z falls in a certain region (between 3.73dB and 14.81dB). It is easy to understand
that the optimal detector rejects H; when measure z is low (z < 3.73dB). However, why

does the optimal detector also rejects H, when measure is high (z >14.81dB)? The next
paragraph explains.

20

A0 - |

In \(z)

-80 L _

-100 L \ \ \
-100 -80 -60 -40 -20 0 20 40

Measure z, dB

Figure 1: LTR In A(z) against measurez = N"*Y 0, | X[n][* .
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Shown in Figure 2 are pdfs of multi-look clutter and multi-look target plus clutter,
respectively, for the given parameters. The pdf’s are shown on linear scale and log scale,
respectively. Shown in the figure is also the LTR. Now the interpretation of LTR curve

becomes clear. When z value is low, p(z;H,) is higher than p(z;H,), and the difference
gradually decreases with increasing in z , and reaches a point T, , where
p(T;;Hy) = p(T;; H,) . On the log scale, LTR monotonically increases and reaches 0 at T, .
After T;, p(z;H,) becomes higher than p(z;H,), so LTR continues its monotonic increase

and reaches its peak where the ratio of the two is maximum. After that point, though
p(z; H,) is still higher than p(z; H,), the ratio decreases. The LTR curve starts dropping

from its peak till reaching O at T, where again p(T,;H,)= p(T,;H,). After T, ,
p(z; H,) again becomes higher than p(z;H,), as the distribution of p(z;H,) has a longer

and heavier tail, according to the given conditions. Therefore, the curve LTR
monotonically decreases after it surpasses its peak.

Target + clutter A !
02 g > \H | .
g Clutter / H |
01 I \ / ‘\ : B
‘ \ |
0 | | . ﬁggJﬁ//////Tt>K\\ K 1
-50 -40 -30 -20 -10 0 10 20 30

Measure z, dB

Pdf

10° | | | | | |

-50 -40 -30 -20 -10 0 10 20 30
Measure z, dB

0 .
g | |
c 50t Threshold T T, 4
-100 | | | | | | 1 |
-50 -40 -30 -20 -10 0 10 20 30

Measure z, dB

Figure 2: (top and middle) pdf's of clutter and target plus clutter on linear scale and log scale,
respectively; (bottom) LTR. The region satisfying LTR greater than In A(z) = Ois also

shown in all three plots.
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Supposing we choose a threshold, In A(z) >0, to accept H, as shown. This is equivalent
to accepting H, when p(z;; H,) > p(z; H,). Therefore, the region [T,, T,] that the optimal

detector accepts H, starts at the point where the pdf of clutter plus target is higher than

the pdf of clutter and ends at the point where the pdf of clutter becomes higher than the
pdf of target plus clutter. It can be seen that the optimal detector does what exactly is

required, because the condition p(z;;H,) > p(z;H,) doesnothold for T, <z <.

If we relax the optimal condition from T, <T <T, to T 2T, to form a sub-optimal detector

for accepting H,, we need to study the consequences. Replacing T, <T <T, by T > T, will
theoretically increase both the false-alarm rate and the probability of detection, because,

P = | p(z;Ho)dz < [ p(z; Ho )dz 7)
P, = [ p(z;H,)dz < ] p(z: Hy)dz ®

Our concern is only the increase of the false-alarm rate. For the optimal detector accepting
H, for T, <T <T,, the corresponding false-alarm rate is,

P = Tf p(Z; Ho)dz )

Alternatively, the sub-optimal detector accepting H, for T > T, accompanies a false-alarm
rate of,

0 Ty ©

[ p(Z; Ho)dz = [ p(z;Hy)dz + [ p(z; Hy)dz =P, + AP, (10)

T T T2

In order to have a reasonable value of P, for the optimal detector, the interval
T,-T,>>0,as P, = ﬂfp(z; H)dz. Because residuals of the pdf for z > T, is very small,
we generally have AP, << P, . For instance, for the above example, we found,

P, =0.08754 and AP, =1.14x10" , and correspondingly, P, =0.9552 and
AP, =6.24x107"°. Therefore, relaxing the condition from T, <T <T, to T >T, does not,

in practical terms, change either P, or P, for this example.

The value of AP;, will surely depends on the parameters. However, for a common radar
detection problem, it often requires a small P, (usually 10° or smaller), and a reasonable

P, (usually 0.5 or higher). In order to achieve ITTlZ p(z;H;)dz =P, > 0.5, the interval T, =T,
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must not be too small. On the other hand, the value of p(z;H,) in this region has to be
small to achieve ITTf p(z;H,)dz = P,,. As shown in the above example, for such conditions,

AP, << Py, holds. For instance, the cumulative distribution function (cdf) of clutter for the
above example is shown in Figure 3. According to this cdf, to achieve a false-alarm rate of
107°, the sub-optimal detector requires z >12.53dB, P, (z >12.53dB;H,) =10"°. On the

other hand, the optimal detector might require 12.53dB < z <15.52dB to have a 3dB
interval to achieve a reasonable probability of detection for a scenario. However, the
relaxation from the optimal condition of 12.53dB < z <15.52dB to the suboptimal

condition of 12.53dB < z < w0 have, in a practical term, the same false-alarm rate of 10°°
because of P,(z >15.52dB;H,) <107,

Log,,(1-cdf)

-

e
|

Figure 3: Cdf of multi-look K-distributed clutter shown as log,,(1—cdf) (v=12, 4=1.0,
N =10).

Therefore, the sub-optimal detector using z > T, for detection performs, for practical cases,
identical to the optimal detector using T, <z <T, provided that the condition of
T, =T, >> 0 is satisfied.

Since the sub-optimal detector only requires z > T,, it means that the associated LTR curve
can be assumed to be monotonic for 0 < Z <. One of such LTR curve is,

M2)=12 11)

The calculation of the sub-optimal detector will become tractable, as the pdf’s of p(z;H,)

and p(z;H,) are known. As explained and for simplicity, the sub-optimal detector using
the LTR of (11) will simply be referred to as the optimal detector.
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The optimal detector of (11) applies to any shape parameter values. When the shape
parameter approaches infinity, it becomes the case of a Gaussian target embedded in
Gaussian clutter. It is well-known that the LTR of (11) is indeed the optimal for such a
case. Since it is assumed that for the K-distributed clutter the underlying mean remains
constant during the multi-look processing period, the variation of X[n], n=1,---,N, is
therefore in fact a Gaussian random process for the processing period. This explains that
the detector determined by the LTR of (11) is also optimal (in practical sense) for the K-
distributed clutter whose slowly-varying component (underlying mean) is unknown but
remains unchanged during the multi-look processing period. Since we also assumed that
the underlying mean is spatially (from range bin to range bin) uncorrelated, and the best
estimate of it therefore is the global mean. The case of spatially correlated clutter will be
discussed in Section 4.

Although the above derivation results in an identical optimal detector for Gaussian clutter
and the compound K-distributed clutter. It has a guiding meaning in research. While the
performance of the multi-look detector against K-distributed clutter has been discussed by
many researchers, here we first mathematically prove that it is also practically optimal for
the compound K-distributed clutter using the Neyman-Pearson principle. It shows that
detection must use the intensity data in order to obtain the optimal detection. Detection
schemes using other data formats, such as amplitude, logarithm transform and so on are
not optimal, and will result in some detection loss for the same false-alarm rate.

Receiver operating characteristic (ROC) curves! for the optimal detector determined by
A(z) = z are shown in Figure 4 and Figure 5 for various given parameters. It can be seen
that for the same probability of detection, the required SCR increases substantially with
the increasing in spikiness of sea clutter, compared to the exponential case. For instance,

for the case of P, =10, P, =0.5 and N =10, it requires a SCR=12.4dB for v =1.2

compared to a SCR=3.8dB for v = (exponential case). It is understood that because of
the spikiness, the threshold has to increase substantially in order to maintain the same
false-alarm rate. The increase in the threshold in turn substantially decreases the
probability of detection. One way to increase the probability of detection is to increase the
number of multi-looks in the non-coherent processing if possible.

1 Conventionally, an ROC curve plots P, against Py, for a given SCR. However, a plot of P,

against SCR for a given Py, is also referred to as an ROC curve recently. This report adopts the

latter definition.
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Figure 4: ROC curves of the optimal detector determined by A(z) =12z with P, =107 and
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Figure 5: ROC curves of the optimal detector determined by A(z) =12z with P, =107 and
N =10.
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Some ROC curves shown in Figure 5 were confirmed using Monte Carlo simulation. In the
simulation, first a dataset of K-distributed clutter and a dataset of Gaussian distributed
target signals, both in the complex domain, were generated according to the given
parameters. The two datasets were combined together in the complex domain. After
taking the square of data’s amplitude, multi-look average processing was followed. The
number of measures exceeding the corresponding threshold was counted and the

associated P, was calculated. The detection performance calculated by the Monte Carlo

simulation is shown in Figure 6, together with the correspondingly theoretical ROC curves
for comparison. It can be seen that they are consistent.
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Figure 6: Confirmation of detection performance using Monte Carlo simulation.

The performance of other detectors was investigated. In particular, we take a look at two
other detectors, namely, the amplitude detector using the measure of N "Y' ,| X[n] |, and

the log detector using N3N ,10log,, | X[n] |2 for detection, respectively. While there are

analytical forms of pdf and cdf for single-look K-distributed data when the data is
measured in amplitude or in log domain (a simple pdf transform governed by

p(y(x)) = p(X)|dX/ dy|), the pdf and cdf of multi-look K-distributed data do not have

simple analytical forms when multi-look average processing is performed for the
amplitude or in the log domain. Therefore the performance of the amplitude detector and
log detector for the Gaussian target embedded in the K-distributed clutter is numerically
calculated using the Monte Carlo simulation (the accuracy of the Monte Carlo simulation
has been demonstrated in Figure 6). Shown in Figure 7 are ROC curves of amplitude
detector and log detector in comparison with the optimal detector, i.e., the intensity
detector. It can be seen that neither the amplitude nor log detectors perform as well as the
optimal detector. Parameters used in the simulation are given in the figure. Other
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parameters were also tested, and the associated ROC curves have a similar trend to the
result shown in Figure 7.

7T 777 N=10 T

Optimal
detection |
Amplitude
detection

. Log L

~  detection

Figure 7: Performance of amplitude detection and log detection in comparison to the optimal
detection, i.e., the intensity detection.

3.2 Clutter with Temporal Correlation

Definitions of temporal and spatial correlations as well as their calculations for the
compound K-distributed clutter are discussed in Appendix C. We begin the discussion for
temporal correlation in this subsection and leave the discussion for the spatial correlation
to Section4. When measure X is temporally correlated, the associated marginal pdf
becomes,

1

p(x; ,H, ) = mexp(— x" (z' M; )_lx) (12)

1
" det(TMf +0°M,

p(x; 7, H,)= )exp(— (e M, + oM, )’1x) (13)

where M is the normalised covariance matrix of clutter with respect to pulse, the matrix

can also be viewed as the covariance matrix of the fast-varying component of the clutter
(See Appendix C for details), and My is the normalised covariance matrix of target signal

with respect to pulse.
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Following the derivation process shown in the previous subsection, the corresponding
LTR for the model presented by (12) and (13) is,

A(x) = %XH M 'x (14)

It can be denoted by,

1 4.
A(x) :Wst (15)
where
s=M'x (16)
Mt =(uM ' =(uM, + oM, )" (17)

The diagram of such an optimal detector is shown in Figure 8. The N-P detector correlates
the received signal X[n] with an estimate of the signal $[n]. It is therefore termed an

estimate-correlator (Kay, 1998, Chapter 5), and S is usually referred to as a Wiener filter
estimator of the signal.

X[n] >y — H;

<y —> Hy

M-l

Wiener
filter

Figure 8: Estimate-correlator for non-coherent detection of Gaussian random signal in compound
K-distributed clutter.

321 Casel: M; =M,

If both clutter and target signal have the same normalised covariance matrix,
M, =M, = M, the above Wiener filter can be simplified to,

M™ =M, (18)
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This is the well-known whitening processing. The coloured (correlated) measures become
white (uncorrelated) after the whitening processing. Since the data becomes uncorrelated
after the whitening processing, the detection performance, including the threshold, false-
alarm rate and probability of detection are all the same as those discussed in the previous
subsection.

3.22 Casell: M, # M,

Unlike clutter data, whose parameters can be measured or estimated from the secondary
data, target signals are normally unknown. If there is no prior knowledge, target signals
may be assumed to be uncorrelated, giving,

Mt =(uM, ) = (uM, +0%1)" (19)
The matrix inversion lemma leads to,

1 1 1 Y1

M =—Mf1(—Mfl +—21J Y (20)
H H o H

It can be seen from (20) that owing to different correlation properties of clutter and target
signals, the optimal processor cannot form a filter that de-correlates correlated

measurements into fully uncorrelated measurements under either H, or H, hypothesis.

Instead, the processor compromises the different correlation properties of clutter and
target signal, and de-correlates measurements into overall least correlation to achieve the

optimal detection. It can be shown that M~ ~ x "M for a large SCR (strong target) case.

Implementation of the Wiener filter (19) for the optimal processor, however, encounters a
difficulty as it requires knowledge of the target signal’s intensity. Because there is no prior
knowledge of target signals, such an optimal detector is difficult to implement.

The generalised likelihood ratio test (GLRT) allows o to be estimated by the maximised
likelihood estimate (MLE) method. The MLE of o is obtained by maximising the
marginal pdf of max {In p(x; T, Hl)}.

0_2

In p(x; 7,H,) =N In(27) - Indet(M, + 21 )—x" (M, + o°1) '
N In(27) - X In(2, + o7)- 3 B -
=-NIn( ﬁ)—r]Z::ln .o _Eﬂn+02
UNCLASSIFIED
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where M, =7M;, A, and E,, n=1,---,N, are the eigenvalues and eigenvectors of M.

To find the MLE of o, we must minimise J (0'2) with respect to o?, where

N E"x
J(c?) = In(A +o%)+ -1
(o) nz::l (" ) /1n+0'2

‘2

(22)

Differentiating J(o°) leads to a non-linear equation of ¢*, and there is no general

solution. Therefore, the GLRT detector cannot be found analytically.

We therefore need to find suboptimal detectors. One of suboptimal detector is to use
aM7' (« is an arbitrary real number), because the filter fully de-correlates the clutter to
achieve the lowest threshold for a given false-alarm rate. This suboptimal detector also

becomes optimal for the strong target case. Selecting « =1, the data after the whitening
processing will become statistically identical to the case of uncorrelated clutter discussed

in Subsection 3.1 under hypothesis H,, so that the threshold setting will be unchanged.

The whitening filter, however will affect the measurement of target signal which in turn
alters the detection.

For uncorrelated Gaussian target signal vector X,, the mean measurement of multi-looks is

E{XtH X, } = No?. When the whitening filter is used, the measurement becomes,

M=

E{(M;l’zxt J'm¥ex, }: tr(M)o? = o (23)

1
z

IIN

n

where tr(-) denotes trace of matrix and A,, n=1,---,N, are eigenvalues of M . Because

tl‘(Mf ): >N A, = N, we immediately have,

M=

1
—2=N 24
. 9

Il
LN

n

The equal sign holds if and only if A, =---= A4, =1 that is for the uncorrelated case of
M, =1. Therefore, when clutter is correlated and the whitening filter is used to fully de-

correlate the correlated clutter, the whitening filter over the uncorrelated Gaussian target
signal always results in a target gain. For instance, if the correlation coefficient is a

geometric series, ie, p,=p", N=0,---,N -1 (such as p,=exp(-f#n), £>0 is a

constant) then we can show,

N+(N-2)|p[
1-|p [

tr(M*)= (25)
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The corresponding target signal gain will be,

_N+(N-2)[pf
NG [p )

(26)

The proof of (25) may be found in Appendix D. Therefore, the higher the correlation, the
higher the target gain. The pdf of z = x'M'x, will not be gamma, and can be derived
using the method given in Appendix E if desired.

The reason we obtain a target signal gain by applying the whitening filter may be
explained in this way. When both target signal and clutter are uncorrelated, the intensity
estimation is the only way to detect the presence of target signal. However when clutter is
correlated, its spectrum is not uniformly distributed anymore, whereas the uncorrelated
target signal has a uniformly distributed spectrum. In other words, the difference in
spectra, if being utilised can improve the detection (or equivalently, providing a target
signal gain). The function of the whitening filter in the spectral domain is to multiply a
least coefficient to the largest power spectral component and a largest coefficient to the
least power spectral component so that the filtered data has a uniformly distributed power
spectrum. Applying the same coefficients to the uniformly distributed power spectral
components (uncorrelated target signal), however, provides a gain. As an illustration,
Figure 9 depicts power spectra of the correlated clutter and the uncorrelated target signal,
respectively (N =6). As shown in the figure, the original SCR is,

1+1+1+1+1+1 6

2+5+3+1+05+05 12

(27)

The whitening processing is to find a set of coefficients so that the spectrum of clutter after
filtering becomes uniformly distributed while maintaining the integral of the power
spectrum (the total power) wunchanged. Such a set of coefficients is,
{1 2/5 2/3 2 4 4}. However the same set coefficients when applied to the

spectrum of uncorrelated target signal generates a gain, as the SCR after filtering
processing becomes,

1+2/5+2/3+2+4+4~1
24+2+24+2424+2

SCR = (28)

Comparing (27) and (28), the generated gain is 2 (3dB). From this example, we can also see
that the higher the correlation, the higher the target signal gain, as indicated previously.
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Figure 9: Power spectra of (a) correlated clutter and (b) uncorrelated target signal.

In conclusion, if target signal and clutter have different correlation properties, and there is
no prior knowledge about the target signal, the GLRT detector cannot be found. One of the
sub-optimal detectors for the uncorrelated Gaussian target signal embedded in the
correlated K-distributed clutter is to use the inverse of the normalised covariance matrix of
clutter as the whitening filter (this sub-optimal detector becomes optimal for large SCR
targets). After the whitening processing, the associated threshold for a given false-alarm
rate will be the same as that for the uncorrelated clutter. On the other hand, the whitening
process provides a target signal gain (the value of the gain is dependent on the correlation
properties of the clutter), and hence results in a higher probability of detection compared
to the same target signal embedded in uncorrelated clutter. In another words, the ROC
curves discussed in Subsection 3.1 is for the worst case scenario.

To demonstrate, Figure 10 compares the performance of the sub-optimal detector using
M7 as the whitening filter for detecting uncorrelated Gaussian target signals embedded

in correlated K-distributed clutter. The blue ROC curve is analytically calculated for the
uncorrelated Gaussian target signal embedded in the uncorrelated K-distributed clutter
with a shape parameter of v =1.2. The green asterisks are the result of the Monte Carlo
simulation, which matches the theoretical results. The second ROC curve (red line with
small circles) is the result of the Monte Carlo simulation for a case of the uncorrelated
Gaussian target signal embedded in the correlated K-distributed clutter with the

correlation coefficients of p, =exp(—n), n=0,---,N —=1. The third ROC curve (broken

purple line with small circles) is the result of the Monte Carlo simulation for a case of the
uncorrelated Gaussian target signals embedded in the correlated K-distributed clutter with
the correlation coefficients of p, =exp(-n/2), n=0,---,N —1. As illustrated earlier, since

the whitening processing produces a target signal gain for the uncorrelated target signals,
the detection for the two correlated clutter cases are improved. According to (26), the

UNCLASSIFIED
17



UNCLASSIFIED

DSTO-TR-2785

associated target signal gains are 1.28 (1.1dB) and 2.05 (3.1dB) for the two correlated cases,
respectively. Knowing the target signal gain, the associated probability of detection can
also be approximately found from the probability of detection for the uncorrelated case?.
For instance, the target gain for the second correlated case is 3.1dB, which means the
probability of detection for a target having a SCR of 10dB for the correlated case will be
close to the probability of detection for a target having an SCR of 13.1dB for the
uncorrelated case, i.e., the third ROC curve can be approximately obtained by horizontally
left-shifting the first ROC curve by 3.1dB. Similarly, the second ROC curve can be
approximately obtained by horizontally left-shifting the first ROC curve by 1.1dB.

1 ‘ ‘ ‘
| | |
1 1 1
09 - Theoretical,
uncorrelated
0.8 - Monte Carlo,
uncorrelated
07 - . Monte Carlo,
06 correlated |
R Monte Carlo,
a° 05| - correlated Il

Figure 10: ROC comparison between uncorrelated and correlated K-distributed clutter embedded
with uncorrelated Gaussian target signals. Two correlated cases are shown: Case I with

correlation coefficients of p, =exp(-n), n=0,---,N —1, and Case Il with correlation
coefficients of p, =exp(-n), n=0,---,N-1 (P, =10"°, u=1, v=12 and
N =10).

If target signal is temporally correlated and has a normalised correlation covariance matrix
M that is known a priori, the target signal mean using M‘f1 as the whitening filtering can

be calculated by,

E {(M;l’zxt J'mx }: tr(MY2M 'MY2 )5 (29)

2 The pdf of the target signal after whitening processing slightly differs from the multi-look gamma
distribution, resulting in a slightly different detection.
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The corresponding target signal gain then can be calculated.

4. Detection Against Spatially Correlated Clutter

Spatial correlation is governed by the slowly-varying component of the compound
K-distributed clutter. The spatial correlation is the correlation with respect to range bin,
while the temporal correlation discussed earlier is the correlation with respect to pulse.
Details of how to discriminate the spatial correlation from the temporal correlation, as well
as how to calculate / estimate the correlation coefficients are given in Appendix C. For
simplicity, the discussion in this section only considers the spatial correlation, as the
temporal correlation has been discussed.

The difference between Gaussian clutter and the compound K-distributed clutter lies that
the texture (the mean of the slowly-varying component) is a constant for the former and
fluctuates for the latter. If the local texture 7 were known, the corresponding N-P optimal
detector would be (when there is no temporal correlation),

11 N H1
A(x)===X|x[n]}* > »¥ (30)
T N n=1 HO

where the threshold y is determined by the false-alarm rate, and,

:LF(N, N y) (31)

Pfa
T(N)

I'(a,b) is the incomplete gamma function3, defined as, I'(a,b)= [t*"e™'dt. The optimal
b

detector of (30) can be directly derived from the pdf of multi-look uncorrelated Gaussian
clutter given by (B5). The detector (30) is referred to as the ‘ideal CFAR" (Watts 1985; Ward
et al. 2006), and its performance is identical to the optimal detector discussed in Section 3
for the Gaussian clutter case.

In the previous Section, the slowly-varying component (texture) is assumed to be fully-
correlated (remain constant) during the multi-pulse collection for the same range bin, but
fully-uncorrelated from range bin to range bin. When the local texture 7 is spatially
uncorrelated, its best estimate is its global mean x . The optimal and near-optimal

1

b
3 Matlab defines the incomplete gamma function in a different way, as, ['(b, a) = —f’[a_le_tdt )
0

Asaresult, Py, zl—F(N 7, N).
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processors presented in Section 3 implicitly use the global mean as the estimate of the local
texture 7 because it is the best estimate when there is no correlation.

4.1 Estimation of Local Texture

The texture of sea clutter is believed to be highly correlated to wave and swell structures of
the sea (Ward et al. 2006, Chapter 2), and some waves can be metres, tens or hundreds of
metres long. This leads to the slowly-varying component to be possibly spatially
correlated. For spatially correlated sea clutter, the local mean 7 estimated by the
neighbouring range bins of CUT is often a better estimate than the global mean s . As a
consequence, using the detector (30) with the estimate 7 as the replacement of the
unknown parameter 7 may result a better detection. This is known as the CFAR gain
(Watts 1996, Watts et al. 2007; Watts 1987; Ward et al. 2006). Whether a CFAR gain is
achievable depends on three conditions:

1. Clutter has fluctuating texture (i.e., compound non-Gaussian distributed);
2. The texture is spatially correlated; and
3. The local texture is estimated correctly.

The CFAR gain in turn depends on the accuracy of the estimate of the local mean 7, and
the spikiness of the clutter. If clutter is spiky, and its spatial correlation is high, obtaining a
CFAR gain is possible by a proper estimation for the local texture.

It should be pointed out that the application of the above method is not limited to the case
of compound K-distribution. In fact, any compound non-Gaussian distribution whose
texture may have different pdfs but possess the similar characteristic (e.g., constant during
the multi-pulse collection and fluctuating from range bin to range bin and spatially
correlated) falls in this category.

As stated above, the better the estimate of the local texture 7, the better the performance
of the detector. Therefore, finding the ways that make better estimates of the local texture
7 improves the performance of the detector.

Following the idea given by Bucciarelli et al (1996), we use the linear autoregressive (AR)
technique to estimate the local texture 7 . Because E{z} = E{r}E{| X, |’} = E{r}, we can

use the clutter intensity Z to estimate the underlying texture 7 .
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Figure 11: Use neighbouring measures to estimate CUT (the case of multi-look in azimuth).

Figure 11 depicts the use of neighbouring cells to estimate the texture. As shown in Figure
11 (b), for a multi-look CUT z[0]= N* le:l| X,[i1]°, we want to use its neighbouring cells

to estimate its value. Using the AR technique, the estimate of z[0] may be expressed as a
linear combination of its neighbouring cells, as (for a general stationary and symmetrical
random process),

2[0] = 3w, (2] + {-n]) £

where L is the length of the one-side estimation window. The unknown parameters, W, ,

n=1---,L, should satisfy,
min (2001 2(0]") (33)

Wy, N=,--,

Among the L unknown parameters, W, , n=1---,L , however, only L-1 are

independent, as <2[0]> = ZI:‘,WH ((z[n] + z[—n])} leads to,

1
2 W, =+ (34)
2
1
Wy =2 - LW, (35)
The minimisation of (33) can be found by use of the Lagrange theorem, as,
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<z[0]az_m>:<z[0]az_m> =2, L 36
OW, OW,
Inserting (32) and (34) into (36), and after some manipulation, we have,

1
E(Zm — 200~ s = e + 712 +775)
k=2, L (37)

L
= > Wy (7o + o = ot = Tt = Tt = T + 772 + 700
n=2

_ Bl +K-EX2 | o,

where 77, = @) -, is the correlation coefficient of Z .
var(z

Changing the value of k gives L —1 linear equations, which provides a unique solution
for w,, n=2,---,L. Together with (35), the all unknown parameters, W,, n=12,---,L,

can be uniquely obtained.

It can be shown that for spatially uncorrelated data, the weights become equal and
w, =1/(2L), n=1---,L . That is consistent with the well-known CA processing. If,

however, clutter is spatially correlated, the optimal weights are unequal.

Considering extended target signals which may occupy a few range cells, radar engineers
often prefer to exclude a few guardian cells next to CUT when estimating CUT using
neighbouring cells, which is shown in Figure 12. The corresponding optimal weights can
be found accordingly using the following linear equations.

CuT

z[-L-g] 2[0] |

/ Range

Guardians

z[1+g] z[L+g]

Figure 12: CUT estimation using neighbouring cells with guardian cells.

1
_(277k+g = 2Mg = s — Msneag +Maiog + 770)
2 k=2--L (3

L
= ZZWn (77n+k+2g t Mg — Mo ~ Mhsazg — e ~ Mg T Mo40g T 770)
n=

where ¢ is the number of guardian cells at each side excluded in the estimation

processing.
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4.2 Results

After the local texture of CUT is estimated, we can now use the suboptimal detector,

1 1N H1
A(x)=—=2|xnll* > » (39)
TO N n=1 HO

to carry out the detection, where 7,, = Z[0] is the estimate of CUT’s texture obtained by the
previously subsection. However, since the pdf of A(x) is unknown, the threshold for the

above suboptimal detector is also unknown, and has to be simulated using the Monte
Carlo simulation.

Using the Monte Carlo simulation, the performance of the detector (39) is determined by
the following two steps.

1. Generating spatially correlated K-distributed clutter data accordingly, estimating
its local texture, calculating the test ratio using (39), and numerically determining

the threshold. The simulation used N x10° samples to determine the threshold,
which ensures an absolute relative error less than 5% for 95% of time for a false-

alarm rate of 10° (P,, =10™°) (Kay 1998, Chapter 2).

2. Generating clutter data, adding target signal data and determining the probability
of detection accordingly. The detection calculation used N x10° samples.

The detection improvement (CFAR gains achieved) varies depending on the correlation.
Below we show two numerical samples to demonstrate the improvement of using the
optimal weights to estimate the local texture. We assume there is no temporal correlation
because such correlation can be decorrelated using the technique described in Section 3.
The spatial correlation of the K-distributed clutter is resulted from the correlation of
gamma distributed texture.

In the first sample, we assume the gamma distributed clutter texture has a correlation
coefficient of,

p. =[0.7+0.3cos(0.127k)]e™ ™  k=0,1,-- (40)

where Kk denotes the number of lagged range bins. After the modulation of the texture
with the fast-varying Gaussian component, and multi-look (independent looks in azimuth)
intensity averaging processing, the resultant multi-look K-distributed clutter has a
correlation of (refer to Appendix C for details),
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N
=1 and =p ——— k=12--- 41
Mo 7k ka+N+1 (41)

Values of v=1.2 and N =10 was used in the Monte Carlo simulation. The texture
estimated by the optimal weights determined by (37) is much better than the estimate of
the CA window when clutter is spatially correlated. Figure 13 shows the estimates of CUT
using these two methods in comparison with the true value. It can be seen that the
estimates by the optimal weights follow the fluctuation much better whereas the estimates
of the CA processing do not seem to follow the fluctuation closely.

10

{
—~ I ey 7
= M/
o I | \
e AV
z “ L
3
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T
: |
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O ,
Data
201 Estimates by optimal weights |
Estimates by CA window
25 \ \ \ \ \ \ \ \ \
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Range bin

Figure 13: CUT estimate by use of the optimal weights and the CA window, respectively. Data
parameters are: v =1.2, 4 =1.0, N =10, and L = 8. The spatial correlation is given
by (40) and (41).

Using the optimal estimates of the texture for the suboptimal detector (39), however, did
not show a significant improvement of the detection. A close examination indicated that
small values of the estimate 7 could lead to large values of A1(x) (see (39)), which, in turn,
forces the threshold to be set high to maintain the desired false-alarm rate. We recall that
false-alarms are often caused by sea spikes, e.g., the high clutter returns, if the detector
uses a fixed threshold, and the low returns are not the concern. Therefore, it seems that

there is no need for a close estimate for low clutter returns, and an accurate estimate is
required only for high clutter returns.

To improve the detector’s performance The estimate 7 is modified as,

. {2[0] if Z[0]> u/2 )

O\ ul2 if0]< ul2
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The profile of the modified estimates of the clutter texture is shown in Figure 14. The
modification effectively eases the false-alarms produced by low clutter returns, and hence
greatly improves the detection. Our simulation indicated that the overall performance is
not very sensitive to the selection of the cut-off of 7 (for instance, (42) selects /2 as the

cut-off value). In general, a lower cut-off value improves detection a little for low SCR
targets at a small sacrifice of the detection of high SCR targets whereas a higher cut-off

value improves detection a little for mid and high SCR targets at a sacrifice of the detection
of low SCR targets.

10

Clutter intensity (dB)

45 Data
Modified estimates
20 by optimal weights
Estimates by CA window
25 ! ! \ \ \ \ \ \ \
0 20 40 60 80 100 120 140 160 180 200

Range bin
Figure 14: Profile of the modified texture.

The performance of the suboptimal detector (39) using the modified texture estimates
given by (42) is shown in Figure 15. Compared to the fixed threshold (which assumes the
mean of clutter be known), the suboptimal detector greatly improves the detection (the
improvement is referred to as the CFAR gain by Watts and others (Watts 1996, Watts et al.

2007; Watts 1987)) and provides a CFAR gain about 6dB at P; = 0.5. The detection using

CA processing also achieves some CFAR gain (about 2dB at P, =0.5), but the proposed
detector performs far better.
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Figure 15: ROC comparison between the fixed-threshold and the adaptive thresholds determined by
the optimal weights and a CA window with L =8 for the spatially correlated K-
distributed clutter with the correlation given by (40) and (41).

In the second numerical example, we assume the gamma distributed clutter texture has a
correlation coefficient of,

o, =" k=01, (43)

Obviously, this correlation is much lower than that of the first example. Again, the multi-
look K-distributed clutter will have a correlation coefficient specified by (41). The
performance of the suboptimal detector (39) using the modified texture estimate given by
(42) is shown in Figure 16, together with the performances of the CA window and the
fixed threshold. It can be seen that the proposed processor is still able to provide a
moderate CFAR gain (about 2dB at the P, =0.5), whereas the CA processor performs

approximately the same as the fixed threshold.
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Figure 16: ROC comparison between the fixed-threshold and the adaptive thresholds determined by
the optimal weights and a CA window with L =8 for the spatially correlated K-
distributed clutter with the correlation given by (43) and (41).

It is worth noting that the achievable CFAR gain depends on the correlation and the shape
parameter. The higher the correlation and smaller shape parameter, the greater the CFAR
gain. If there is no correlation, there will be no CFAR gain at all. Instead, a CFAR loss will
occur. Because for spatially uncorrelated clutter, the best estimate of the local mean is the
global mean, and using a limited size of the CA window to estimate the local mean
inherently associates with a loss (the optimal weights becomes identical to the CA window
for the spatially uncorrelated clutter).

‘Ideal CFAR’" proposed by Watts (1985) is the theoretical upper bound a CFAR processor
could achieve for spatially correlated non-Gaussian clutter. However, how to find the
unknown ‘true’ clutter texture remains unsolved. This section uses the linear AR technique
to estimate the unknown clutter texture. Theoretically, the estimate is the optimal for the
given size of the window and the linear regression model. The estimated texture is then
modified to mitigate possible false-alarms caused by low returns. It has shown through
numerical examples, the proposed suboptimal detector is able to provide a much higher
CFAR gain compared to the traditional CA processor for spatially correlated non-Gaussian
clutter.
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5. Summary

Optimal non-coherent radar detection of Gaussian targets (Swerling II model) embedded
in the compound K-distributed clutter has been investigated. The derived optimal
detector, under the sense of the Neyman-Pearson principle is the well-known square-law
detector. This is because the underlying texture of the compound K-clutter remains
unchanged during the multi-pulse averaging processing period according to the
assumption, so that the clutter actually undergoes a Gaussian random process during the
period of multi-pulse collection. While the derived optimal detector is not new, the
derivation itself has a guiding meaning. As the detector has been rigorously derived for
the first time using the Neyman-Pearson principle, it means there does not exist any
detector that would perform better for the given conditions. Other detectors, such as
multi-look amplitude detector, multi-look log detector and the like are inherently
associated with some detection loss compared to the optimal detector, the multi-look
intensity detector.

A sub-optimal detector (it becomes optimal for large signal-to-clutter ratio targets) has
been proposed for temporally correlated K-distributed clutter. The normalised covariance
matrix of clutter is used to de-correlate the clutter. The whitening processing provides a
target signal gain, resulting in an improved detection. The higher the correlation, the
larger the target signal gain. The target gain results from the difference in spectra of
correlated clutter and the uncorrelated target signals (a non-uniform spectrum of clutter
against a uniform spectrum of target) that provides a second characteristic (in addition to
the intensity) for discriminating the target from the clutter. The occurrence of uncorrelated
Gaussian targets embedded in uncorrelated compound clutter represents the worst
scenario in terms of detection.

If the clutter is spatially correlated, using a limited number of neighbouring range bins to
estimate the local texture can provide a CFAR gain and improve the detection. This report
has proposed the use of the linear AR technique and derived the optimal weights for
estimating the local texture of clutter. The AR estimation is optimal under the linear
assumption and results in better results than the cell-averaging estimation. The AR
estimates are further modified to mitigate possible false-alarms caused by low clutter
returns. It has shown that the proposed processor greatly improves the detection
compared to the traditional CA processor for spatially correlated clutter. The higher the
correlation, the higher the CFAR gain. However, when clutter is spatially uncorrelated, the
global mean is the best estimate of the local texture.

A summation of the optimal or near optimal non-coherent process for detecting Gaussian
targets embedded in K-distributed clutter that may be temporally and spatially correlated
is provided in Appendix A as a quick reference for radar engineers implementing the
detection process.
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Appendix A: Summation of Optimal or near Optimal
Non-coherent Detection Process

This appendix is a summation of the optimal or near optimal non-coherent radar process
discussed in this report. It serves as a quick reference for radar engineers implementing
the detection process.

Assumptions:

1. Clutter has a compound K-distribution (thermal noise is included), and may have
temporal correlation (with respect to pulse) and spatial correlation (with respect to
range). Parameters of the K-distribution as well as the correlations are known or
have been estimated using the sample data.

2. Target is point-like and has a Gaussian distribution.

For each cell under test (CUT), its neighbouring cells under the consideration is depicted
in Figure Al. The neighbouring cells under the consideration are assumed to be target-

free.

CUT
A N
?
=
o3
2
1
Lo 1 g 0 g 1 - L
Ran
ge \ . / Range
Guardians

Figure Al: Using neighbouring cells to estimate CUT (the case of multi-look in pulse and multi-
look in range).

First, the temporal correlation is decorrelated and cell values are averaged for each range
bin. This process is called multi-look process.

Z, :ﬁleM_lxl | =41+t L (A1)
where
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x =[x[ - x[NIJ (A2)
The calculation of M is given by (20). If target signal is uncorrelated or unknown, M
becomes,

M =M (A3)

where u is the clutter mean and M; is the normalised temporal correlation matrix of

clutter. If clutter is temporally uncorrelated, (A1) becomes,
1 2
Z, :W2|xl[n]| | =41, +L (A4)
n=1

The above process reduces the two-dimensional data window to a one-dimensional data
window as shown in Figure A2.

CUT
z[-L-g] z[L+g]
Range \ / Range
< Guardians >
Figure A2: Data window after multi-look processing.
The second stage is to estimate z[0] by symmetrical weights, as,
R L
2[0]=>" w, (z[n] + z[-n]) (A5)
n=1
The weights are calculated by,
wl [T 1 - 1712
VYz _ 0 8z . 8y b.z (A6)
Wi 0 a, a, b,
Where
b, = (2., ~2 ) k=2,---,L A7
k _E Mkvg = Mg — Tl — Tkateag +772+2g +1 — & ( )
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a, = Mhiks2g + o = Thha — Mhaaeag — Tk = Tkatezg + M242g + 1, k' n=2,-,L (A8)

1oL =
E{z[ilz[i + K]} - E {z}’ K=0.1.
var(z)
g is the number of guardian bins on each of side of CUT. The correlation is assumed to be

where 7, = --is the spatial correlation coefficient of z, and

symmetrical with respect to CUT.

Finally we calculate 7, by,

: {2[0] if 7[0]> u/2 9)

wl2 if 2[0]< ul2

The detection is then performed simply by comparing 7,/ to a threshold y that is

determined by the false-alarm rate to declare absence or presence of target in the CUT. The
whole detection process is depicted in Figure A3.

x, [n] z[1]

Multi-look process
in azimuth

Weighted average >u2 | 7o > — H

in range > Tu
9 <=pf2 < > Ho

Figure A3: Block diagram of optimal or near optimal non-coherent detection of Gaussian
targets embedded in compound K-distributed clutter.

1
If we let w, = PTG n=1---,L, then the spatial processing becomes cell-average CFAR

(CA-CFAR) in range. If there is no spatial correlation (correlation in range), there is no
need to estimate Z[0] using multiple range cells. The best estimation of z[0] is x in this
case.
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Appendix B: Approximation of Gaussian Signal Added
in K-distributed Clutter

The compound K-distribution is assumed to have two components, a fast-varying
component, called speckle, that is a zero mean, unit variance complex Gaussian variable,
modulated by a slowly-varying component, called the underlying mean or texture whose
intensity is gamma distributed. The intensity of such K-distributed clutter has a pdf of,

ND=Zp@|ﬂp@NT (B1)

where z =| X, |* is the intensity of clutter, p(z|7) is the marginal pdf of z for a given
underlying mean 7 and p(z) is the pdf of the underlying mean. Accordingly,

p(z|7)= %exp(—z/r) (B2)

14

" *exp(-br) (B3)

b
PO =5

14
where v is the shape parameter, b=—, u=E{| X |’} is the mean clutter intensity.
U

Inserting (B2) and (B3) into (B1), we have the well-known K-distribution of

_2b e
P = o 02) K, (2vbz) (B4)

For multi-look processing, if during the multi-look sampling period, the slowly-varying
component remains unchanged, the resultant multi-look processing is simplified to a
multi-look processing of fast-varying component modulated by the unchanged gamma
distribution.

If the fast-varying component varies independently, i.e., the samples are uncorrelated, the
mean of N exponentially distributed samples is a gamma distribution, as,

j (B5)

Inserting (B5) and (B3) into (B1), one obtains the N-look K-distribution,

;NZ’\H exp(—
T(N)(z/N) z/N

p(zl7) =

p(z) #(sz)(”wz K, (2\/sz) (B6)

T T(N)[(v)z
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N
where z = % > z[n]. When N =1, (6) simplifies to (B4).
n=1

Now consider the distribution of a combination of thermal noise (or in general a Gaussian
signal) and K-distributed clutter. Assuming the Gaussian signal, and clutter each is

independently random process, we denote Gaussian signal X, ~ CN (0, 02), and the
conditional clutter X, |7 ~CN(0, 7). Since they are independent processes, and X, is

independent of 7, we have,

(X, +X.)|z~CN(0, r+c?) (B7)
or,

1 yA
p(z,|y) = 1ol exp[— y:azj (B8)

where 7, = |Xt + XC|2 is the intensity. The pdf of z, is given by,

p(z,) = I p(z, | 7)p(z)dr (B9)

Unfortunately, the above integral does not have a closed-form solution. Therefore, the
distribution of the Gaussian target signals (or Gaussian noise) embedded in the K-
distributed clutter is unknown. For extreme cases we note that the distribution will still be
the K-distribution for a very low SCR case and exponential for a high SCR case. The latter
is also a K-distribution with the shape parameter of infinity. Watts (1987) has studied the
distribution of the combined K-distributed clutter plus Gaussian thermal noise. He has
approximated the combined distribution as a new K-distribution, with a modified shape
parameter and a modified mean. Following this idea, we approximate the distribution of
(B9) to a K-distribution with new parameters of (,ul, Vl) whose values are derived using

moment methods in the following.

It is known that for the K-distribution given by (B4), the shape parameter is a function of
the normalised moments. For instance, for the second normalised moment,

2(v, +1) _ E{Zf}
Vi - EZ{Zl}

(B10)

where 7, =| x, + X, [°, once E{z;} and E{z/} are found, the corresponding v, can be

derived accordingly, as the distribution of z, is assumed to be K.

Eqz} = E{| % + X, [}= E{ % [}+ E{I , [}=u+0” (B11)
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To find the variance of z,, we first find,

E{22}= EO X+ % [ = B % 1D+ EQ X, [F+4601 % PYEQ %, ) @12)
(| '} = 20° @13)
Bl x 1= 22 514)

Inserting (B11)-(B14) into (B10), we have,
v, =v(1+ B) (B15)

where f=0?/u is the SCR of the data. Equation (B15) is identical to what is given by
Watts (1987)%.

Similarly, the third normalised moment of K-distribution is,

6(v, +2)(v, +1)  E{z’}

- (B16)
vi E*{z}
After some elementary algebra, (B16) becomes,
2 2 3
3Vl+2:(v+2)(v+1)/v +38(v+)Iv+3p°+p 1 (B17)

vy @+ p)°

When f#0, (B17) is a quadratic equation of the unknown v, which is solvable once the
shape parameter of clutter, v, and the SCR, 3, are given. Its explicit solution is,

, _3TVO+8A (B18)
! 2A

3v(l+ p)+2
v+ B)°

where A=
We thus have derived two Formulae, i.e.,, (B15) and (B18) for estimating the shape
parameter v . If the distribution of target embedded in clutter is exactly a K-distribution,
the two formulae should result in an identical value. Since the true distribution of the
combined two is unknown, and the K-distribution is only an approximation, the shape

4 It is noted that in the Watts” paper (1987), the clutter-to-noise ratio (CNR) is used whereas here the
signal-to-clutter ratio (SCR) is used.
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parameter estimated by (B15) and (B18) may be slightly different. Often(B18) results in a
slightly smaller value, and the corresponding distribution may fit marginally better in the

tail region.

The accuracy of using a new K-distribution to approximate the distribution of Gaussian
target signals embedded in K-distributed clutter may be examined by comparison between
the pdf numerically integrated by (B9) (treated as the ‘true’ distribution when the
integration interval is sufficiently small) and the pdf of the K-distribution whose shape
parameter is determined by (B15) or (B18). Figure 17 shows such a comparison. It can be
seen from the figure that the K approximation is almost identical to the true distribution,
though the upper tails of the two separate apart slightly at the far end. However, the
accuracy of using a new K distribution to approximate the distribution of Gaussian target
signals embedded in K-distribution clutter would be sufficient for the purpose of radar

detection analysis.

0.1 : : : ‘ 10°
Numerical Numerical
0.08 ¢ integration B integration
K approxi- K approxi-
0.06 mation mation
E= — -5
g g 10
0.04
0.02
0 . . . 10’10 . . . | | .
-30 -20 -10 0 10 20 -100 -80 -60 -40 -20 0 20
Intensity (dB) Intensity (dB)
(a) pdf on linear scale (b) pdf on log scale

Figure 17: Pdf comparison between numerically integrated (viewed as “true distribution’) and the K
approximation (v =10, =10 and SCR=5dB ) The shape parameter v, is

determined by (B18).

The Monte Carlo simulation was further used to examine the agreement between the
assumed distribution and the actual distribution of target plus clutter. In the simulation, 10

million (107 ) samples were generated, and the histograms of data were compared with the

pdf of the K-distribution. Figure 18 and Figure 19 show the goodness-of-fit of the
histograms of data and the pdfs of the corresponding K-distributions. It can be seen that
agreement between the two is superior, and hence the distribution of a Gaussian target

embedded in K-distributed clutter can be confidently modelled as a new K-distribution.
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Figure 18: Goodness-of-fit for distribution of Gaussian target embedded in K-distributed clutter
(#=1.0,v=12, SCR=23dB).
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Figure 19: Goodness-of-fit for distribution of Gaussian target embedded in K-distributed clutter
(#=10,v =12, SCR=10dB).

It is found that once a Gaussian target is embedded in the K-distributed clutter, the
distribution of the combined two becomes much less spikier than the original
K-distributed clutter, i.e., the new shape parameter v, is usually larger than v . If SCR is
large, the combined distribution approaches Gaussian (the intensity approaches
exponential), as the combined signal has a dominant Gaussian component. For numerical
calculations, the K-distribution with a shape parameter > 50 can be approximated as a
Gaussian distribution (exponential distribution for the intensity). Figure 20 shows the
shape parameter v, as a function of v and SCR. If can be see that for moderate sea clutter
having a shape parameter of 5 or larger, the distribution of Gaussian target plus clutter can
be treated as Gaussian distributed once the SCR is greater than 3dB. However, for spikier
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sea clutter with a shape parameter less than 1, the distribution of the combined two slowly
approaches Gaussian only when SCR close or greater than 10dB.

50 - =
— v=05
40 - e y=12 7
- — v=5.2
c — y=10.2
@ v =10.
g 30r B
IS
g
I
o
g 200 ]
IS _
) _—— A
10: J::’l;/ = _
"
0 = — T —— ! ! ! !
-10 -8 -6 -4 -2 0 2 4 6 8 10

SCR (dB)

Figure 20: Shape parameter v, rapidly increases with the increase in SCR (solid-line and broken-
line curves are calculated by (B15) and (B17), respectively).

Another way to examine whether a distribution is exponential is to examine its statistical
properties including mean, median, variance, skewness and kurtosis. Table Al lists these
statistical measures for the Monte Carlo simulated 10 million (10" ) samples of Gaussian
target embedded in the K-distributed clutter. It shows that with an increase in SCR, the
distribution of the combined signal intensity indeed approaches exponential. Figure 21
examines the goodness-of-fit for a case of Gaussian target embedded in the K-distributed
clutter, with parameters of £ =1.0, v =5.0, SCR =4dB. It shows that the distribution is
almost identical to the exponential distribution.

Table A1l: Statistical measures of Monte Carlo simulation (10° samples) in comparison with
theoretical values of an exponential distribution.

Mean Median Variance Skewness Kurtosis
Exponential  distribution H u |n(2) Iu2 2 6
P(z) =exp(-z/ u) | u (1.000) (0.6931) (1.000)
10 million samples of 1.000 0.686 1.032 2.097 6.821
combined target + clutter,
v =5 SCR =4dB
10 million samples of 1.000 0.692 1.004 2.014 6.107
combined target + clutter,
v =5, SCR =10dB
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Figure 21: Goodness-of-fit for distribution of Gaussian target embedded in K-distributed clutter
(1#=1.0, v=>5.0, SCR =4dB). The approximated K-distribution is almost identical
to the exponential distribution.
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Appendix C: Temporal and Spatial Correlations of
Compound K-Distributed Clutter

The compound K-distribution assumes that the data consists of a fast-varying component
modulated by a slowly-varying component. The fast-varying component commonly refers
to the speckle component that is a Gaussian random process with zero mean and unit
variance. The slowly-varying component is also called underlying mean whose intensity
has a gamma distribution. Because of the nature of these two components, caution has to
be exercised when estimating temporal correlation and spatial correlation.

C.1. Temporal Correlation (Correlation in Azimuth)

It often needs to know the temporal correlation between data samples collected by a pulse
train in a coherent processing interval (CPI). Often we can assume during the CPI, the
slowly-varying component remains unchanged, i.e., the slowly varying component is fully
correlated (this is how the compound K-distributed clutter got its name)5. The covariance
matrix of the data is written as,

M= E{xxH } (C1)

where expectation is with respect to the pulse for the temporal correlation, and
X = [X[O] -+ X[N —1]]T isa N x1 vector collected by N pulses. Each measurement may

be further written as a product of fast-varying and slowly-varying components, according
to the model assumption, as,

X[n] = /7 x;[n] (€2)

where X, [n] is the fast-varying component which is a complex Gaussian variable, 7 is the

underlying mean which is constant in a CPI. Because two components are independent,
we have,

M:E{XXH}zE{T}E{fo':}:,qu (C3)

where M = E{xfx'f4 } is the covariance matrix of the fast-varying component and u the
clutter mean. Therefore, the temporal correlation can be estimated using data samples and
the correlation of fast-varying component is just the covariance matrix normalised by its
mean. Under the assumption of wise sense stationary, M ; has a Toeplitz structure of,

5 With reference to a maritime search radar, there is high superposition of antenna footprints with
respect to successive pulses in a CPI, so the texture of sea clutter can be assumed to be completely
correlated.
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1 o o pua
” 1 ... :
M, =| T (C4)
: o)
Pva P L

where p, = SEXXTi+K]},  i,k=0,L- N 1.
Y7,

C.2. Spatial Correlation (Correlation in Range)

The correlation of texture may be found from the spatial correlation. However in order to
find the correlation of texture, we normally need to manipulate data in the intensity (or
amplitude) domain rather than the complex (IQ) domain. Because if we consider the
correlation between range bin iand range bin i +k, k # 05,

E {/eilx, [l + KIX; [i + K1} = E{/7ileli + K1 [E{x, [ix; [i + K1} (C5)

However, if the interval between bin I and bin i+K is greater than the radar range
resolution, E{Xf [ix; [ + k]}E 0. Therefore, even if E{qlr[i]r[i + k]}?& 0, its value is not
measurable using the IQ data. Therefore, the correlation of texture has to be found using
the intensity (or amplitude) data. First we define the correlation coefficient of texture, p,
and the correlation coefficient of intensity, 77, respectively, as,

_Elelildi+kI-E* e} | _ 01...

X var(r) 0
- E{z[i]z[i +k]}- E*{z} K01 ()
var(z)
Obviously,
Mo =po =1 (C8)

Below we will find the relationship between 7, and p, for K #0.

Denoting z =| X |°=7|X; |’=72,, we have,

¢ In order to simplify symbols, the same index notation is used to represent either temporal series
(the index refers to pulse numbers) or spatial series (the index refers to range bin number). There
should be no confusion under the context.
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E{z[ilz[i + K]} = E{e[ile[i + Kz, [i]z, [i + K]} (C9)
Since the fast-varying and slowly varying components are independent, we have,
Ele[ileli + K1z, [i]z, [i + K]} = E{e[ile[i + KI}Ez, [i1z, [i + K]} (C10)

For k # 0, the value of E{Zf i1z, [i + k]} can be calculated by the Isserlis’ Theorem (see

Michalowicz, J.V., Nichols, ].M., Bucholtz, F., and Olson, C.C., “An Isserlis’ theorem for
mixed Gaussian variables: application to the auto-bispectral density”, J. Statistical Phys.,
2009, 136, (1), pp. 89-102, for details), as,

Efz, [ilz, [i + K1} = Ex, [iIX [i1x, [i + KIx; [i + K1

or k#0
= 1+E{x, [ix, [i + KIJE {X; [0 i + K1J+E {x, [i]x; Ti + K1JE X [idx, [i + K1} for

(C11)

If the interval between bin I and bin i +K is greater than the radar range resolution, the
last two items of (C11) become zero, so E{Zf [z, [i + k]}: 1, the above correlation

simplifies to,
E{c[ile[i + K1} = E{z[ilz[i + K1} for k #0 (C12)
Combining (C6), (C7) and (C12), and noticing E{r} = E{z} = 1, one achieves,

var(z)
= k=12--- C13
M = P« var(z) (C13)

Equations (C8) and (C13) indicate once we know the correlation of zZ or 7, the correlation
of the other can be determined.

The texture 7 is gamma distributed, and the intensity z is single-look or multi-look
(multi-pulses) K-distributed, their variances, respectively, are,

var(t) = u* v (C14)

v+N+1 ,

var(z) = (C15)

where N is the number of multi-looks (multi-pulses). Therefore, because of the effect of
the fast-varying component that is uncorrelated and randomly varies, the correlation of
the intensity Z is generally weaker than the correlation of the texture r that is the
originator of the correlation. Only if the number of multi-looks reaches infinity when the
fluctuations of the fast-varying component disappears (averaged to its mean value for
every range bin), two correlations become identical.
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Inserting (C14) and (C15) into (C13), we have,

N
—p, — k=12 C16
Tk “V+N+1 ( )

The correctness of the above derivation is confirmed by the Monte Carlo simulation. In the
simulation, we first generated the slowly varying component, gamma, that has a shape
parameter of v =1.2 and a correlation coefficient of,

p. =[0.7+0.3co0s(0.127k)] e™** k=01, (C17)

The multi-look K distributed data was then generated by modulating the uncorrelated
multi-look fast-varying Gaussian component to the correlated gamma. The correlation
coefficient for the simulated multi-look K data was regressed and compared to the
theoretical value, and details are shown in Figure 22. It can be seen that the simulated
results match the theory. Only when the number of multi-looks in the averaging
processing (multi-pulse averaging processing) becomes large, the correlation of the multi-
look data approached the correlation of the slowly-varying component.

0.84 * Simulated
——O—— Theoretical

067 ¥ * Simulated

0.4 | Theoretical

Correlation coefficient
Correlation coefficient

0 20 40 60 80 0 20 DT I 7 i
Number of lagged range bin Number of lagged range bin
(a) Correlation of gamma (b) correlation of K

Figure 22: (a) the designated correlation of the gamma component and (b) the correlation of the
multi-look K data (the cases of 1-look and 16-looks are shown).

For range over-sampled data, when the range interval between bin i and bin i +k (k #0)
is smaller than the range resolution, the fast-varying component is also correlated in range,
resulting in E{Zf [z, [i + k]}> 1 (see (C11)). So the correlation of the intensity z will be

jointly contributed by the fast-varying component and the slowly-varying component.
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Suppose a covariance matrix is symmetrical, positive definite and has a Toeplitz structure

of,
1 p
p 1
M =
p;—z
_p;—1

Po
£1
p 1
PP

PN
Pn-2

Pr
1

(D1)

The inverse, while still be symmetrical and positive definite, does not in general have a
specific structure.

However, if p, K =0,:--, N —1 is a geometric series, e.g.,
B 1 o pz pN—l_
P 1 p PN
M= .
(p"?) P 1
L(p") () P

Then the inverse of M has a simple structure as,

fa ¢
C*
M™=
0
_O
where
_ 1
1—|p|§
_L+]p]
1-|pf?
C:%
1-| p|

0
¢ b
0 ¢ a
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To prove (D3), we denote A ; for element of A, I,j=1---N,and

1 p p> - pVtlla ¢ O
o 1 p PVt b ¢
A= g (D3)
" - pt 1 p O D
L") () T 1 JO - 0 T al

It is not difficult to write,

A =a+pc =1, A,=pc+a=1
A=pc+b+pc’ =1, i=2--N-1
A=p e+ pl b+ pl e =p e+ ph+ p%cT)=0, i< j
A;=A;=0 i>j(AisHermittian)

(Do)
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Appendix E: Distribution of Muli-look Correlated K-
Distributed Data

Multi-look processing, coherently or non-coherently, is a common practice for radar data
processing. In some cases, data are correlated. We want to derive the distribution (pdf and
cdf) of multi-look correlated data, including Gaussian and K-distributed data.

Denoting M the normalised covariance matrix of correlated complex Gaussian vector X,
the correlation can be expressed by spherically invariant random process (SIRP)
(Rangaswamy et al. 1993; Antipov 1998). Letting t be a mutually uncorrelated circularly

. . . . 2 .
complex Gaussian vector with vector zero mean and covariance matrix of oI (I is an
elementary matrix), the correlated Gaussian vector X may be written as,

x=M"?t (E1)

where M"? = EAY?E", E and A are eigenvectors and eigenvalues of M (note that M
is a Hermitian matrix, e.g., symmetrically positive definite matrix, and in addition it has a
Toeplitz structure). Obviously the covariance matrix of X is,

Efox = E{MY2tt" (MY2)" |= 6°M (E2)

1
So the normalised covariance matrix is M I—ZE{XXH }, and o = E{|x|’}. Now we

o

want to derive the pdf of %ZiNll X[i] |2 = % x"'x . First we have,

iXHXzi(Mlmt)H (MY2¢) =i§:/1i It | :iki It | (E3)
N N N ia i=L

where kK, =4 /N and 4, i=1---,N, are the eigenvalues of M. Note that t;, i=1---,N,
are mutually uncorrelated and each is a complex Gaussian distributed, and |t |* is

exponentially distributed and has a mean of o”.

1 . .
According to (E3), the pdf of WZiNzl' X[i] |2 is identical to the pdf of Y k. |t[i]|*. Since t,

(i=1,---,N) are mutually uncorrelated, the pdf of N,k |t[i]]° can be derived from the
so-called convolution formula (Wilks, 1962, p. 204) of,

Pn (t) =I p(t_x)pN—l(X)dX (E4)
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where p(x) = p,(X) . Using (E4), we derive the pdf of t = %XH X = %Z!\'J X[i]]° as,

o= LSk ixp(—t/(kia ))

o 1 H(k| _km)

m=i

(E5)

The cdf is,

(013K expl- (ko)) )

i=1 ]:[(kl _ km)

m=i

The n" moment of t is,

E{t"}=n! 02%# (E7)
= H(k| _km)

m=1
mai

It is known that the multi-look uncorrelated Gaussian data has a gamma distribution of,

1 N1 Z
_ _ E8
) F(N)(ale)NZ eXp( GZIN] (%9)

1N
where z = WZ| x[n]°, and N is the number of multi-looks.
i1

The distribution of multi-look correlated Gaussian data is given by (E5) which is not a
gamma distribution. However, for simplification, it may be approximated by a gamma
distribution whose mean and equivalent number of independent looks may be found by
equating the mean and the variance of the both distributions. In general, the equivalent
number of independent looks is greater than 1 (fully correlated case) and less than N
(fully uncorrelated case). For example, if the covariance matrix has a Toeplitz structure, as,

L popo o Paa
pl* 1 o Pus
M = o2 E (E9)
N N S
2 RN
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By equating the first and second moments of (E5) and (E8), we found the equivalent
number of independent looks to be,

K= N N>2

N 2 N-1
1+ = Y(N-n)|p, [
N n=1

(E10)

Figure 23 compares the exact distribution and the approximated gamma distribution for
multi-look of Gaussian distributed data with N =8, and correlation coefficients of
0, =exp(—n). It can be seen that that approximated gamma distribution starts deviating
from the exact distribution in the far upper tail region.

0.25 - 0
I _
02 HER !
j H
0.15 [ -2

0.1

| 4 \
| *,
0.05 / \\ | 4 \\
_5 L L L 1
0 1 1

Iogm(l—cdf)

0 2 4 6 8 10
-5 0 5 10 T(z) in dB
(a) pdf (p, =exp(-n)) (b) 1-cdf (0, =exp(-n))

Figure 23: Distribution of t= N3N | x[i]|* is approximated as a gamma distribution when
samples are correlated. The blue dots represent data’s distribution and the green lines

stand for the approximated gamma distribution (N =8, p, =exp(—n) which result in
K =6.3102).

The distribution of multi-look correlated K-distributed data can be derived in the similar
way. We assume that the slowly-varying component remains constant during the multi-
look process, i.e., the slowly-varying component is fully correlated during the period of
multi-looks and the fast-varying component is partially correlated and has the covariance
matrix of M. The corresponding pdf and cdf are given by (E11) and (E12), respectively.

b 8 kM (b 7" ( b J
Z) = Y —1 Kol 2. [—z E11
p( ) F(V) i=1 (k| _ km) [kl J ki ( )
m=1,m=i
P(z) = ! % N k'™ r'(v)- 2{3 zjm KV(Z Bz] (E12)
F(V) i=1 H (ki _ km) ki ki
UNCLASSIFIED

51



UNCLASSIFIED
DSTO-TR-2785

where z=N7"YN|X[i]]* . Similarly the exact distribution given by (E11) can be
approximated by a multi-look K-distribution given by (B6) with an equivalent number of
independent looks. Figure 24 compares the exact distribution and the approximated
distribution for multi-look of K-distributed data with N =8, and correlation coefficients
of p,=exp(-n) . Although the correlation is the same as the above example, the

approximated pdf now demonstrates much better agreement with the exact pdf. Because
for the K-distribution, its upper tail is primarily determined by the shape parameter (the
slow-component), and the approximation processing only affects the fast-varying
component, but has no effect on the slowly-varying component. As a result, the
approximation for the K-distribution is better for small shape parameters than larger ones.
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Figure 24: An example of multi-correlated-look K-distribution, N =8, p, =e™" and v =1.2. The

equivalent uncorrelated look number is k =6.3102 for the approximate multi-look K
distribution.

UNCLASSIFIED
53



Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA

1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT

Optimal Detection in the K-Distributed Clutter Environment -- Non- | CLASSIFICATION)

Coherent Radar Processing

Document U)
Title (8)
Abstract L)

4. AUTHOR(S)

5. CORPORATE AUTHOR

Yunhan Dong DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-2785 AR-015-478 Technical Report December 2012
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF REFERENCES
eg: 2009/1034056 CDG 07/040 DGAD 53 26

13. DSTO Publications Repository

http:/ /dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Electronic Warfare and Radar Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes

18. DSTO RESEARCH LIBRARY THESAURUS

Optimal Detection; K-Distribution; Non-Coherent Radar Processing.

19. ABSTRACT

Non-coherent detection of Gaussian targets (Swerling II targets) in the K-distributed clutter environment is investigated. The optimal
detector is derived based on the Neyman-Pearson principle. It is shown to be the well-known square-law detector. Amplitude detector,
log detector, and the like are not optimal, and result in some detection loss. Temporally correlated clutter provides a target gain, and
improves detection. The higher the temporal correlation, the higher the target gain. Spatially correlated non-Gaussian clutter can also
provide a CFAR gain. The autoregressive technique is used to optimally estimate the texture of the clutter. That in turn significanly
improves the detection compared to the traditional cell-averaging processing.

Page classification: UNCLASSIFIED




	ABSTRACT
	Executive Summary
	Author
	Contents
	Acronyms
	1. Introduction 
	2. Justification of K-distributed Clutter
	3. Optimal Detector for Non-Coherent Detection
	3.1 Uncorrelated Clutter
	3.2 Clutter with Temporal Correlation

	4. Detection Against Spatially Correlated Clutter
	4.1 Estimation of Local Texture
	4.2 Results

	5. Summary
	Appendix A:  Summation of Optimal or near Optimal Non-coherent Detection Process
	Appendix B:  Approximation of Gaussian Signal Added in K-distributed Clutter
	Appendix C:  Temporal and Spatial Correlations of Compound K-Distributed Clutter
	C.1. Temporal Correlation (Correlation in Azimuth)
	C.2. Spatial Correlation (Correlation in Range)

	Appendix D:  Inverse of Covariance Matrix
	Appendix E:  Distribution of Muli-look Correlated K-Distributed Data
	DOCUMENT CONTROL DATA

