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ABSTRACT  
 
Non-coherent detection of Gaussian targets (Swerling II targets) in the K-distributed clutter 
environment is investigated. The optimal detector is derived based on the Neyman-Pearson 
principle. It is shown to be the well-known square-law detector. Amplitude detector, log 
detector, and the like are not optimal, and result in some detection loss. Temporally correlated 
clutter provides a target gain, and improves detection. The higher the temporal correlation, 
the higher the target gain. Spatially correlated non-Gaussian clutter can also provide a CFAR 
gain. The autoregressive technique is used to optimally estimate the texture of the clutter. 
That in turn significanly improves the detection compared to the traditional cell-averaging 
processing. 
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Optimal Detection in the K-Distributed Clutter 
Environment -- Non-Coherent Radar Processing   

 
 

Executive Summary  
 
In the maritime environment, radar detection unavoidably needs to deal with 
undesired signals, primarily sea clutter (echoes from the sea surface). How to detect 
target signals, especially relatively weak ones, against the clutter is challenging. 
 
Optimal detectors, based on the Neyman-Pearson principle, that maximise the 
probability of detection for a given false-alarm rate are the most interesting detectors to 
the radar community. Their derivation depends on the statistical models of both the 
clutter and the target. In a recent paper, ‘Optimal coherent radar detection in a K-
distributed environment’ we have discussed the problem of optimal coherent 
detection. This report focuses on the non-coherent detection of Gaussian targets 
(Swerling II targets) in the compound K-distributed clutter environment.  
 
This report makes the following three contributions. 
 
First the optimal detector for multi-look non-coherent detection of Gaussian targets in 
the compound K-distributed clutter is derived. The optimal detector derived is shown 
to be the well-known square-law detector. This is because the clutter undergoes a 
Gaussian random process during the multi-look processing period (i.e., the multi-pulse 
processing period), as the slowly-varying component of the compound clutter remains 
unchanged during the period, according to the assumption. Although the derived 
optimal detector is not new, the derivation itself has a guiding meaning. As the 
detector has been rigorously derived for the first time using the Neyman-Pearson 
principle, it means that no other detectors exist which would perform better for the 
given conditions. Other detectors, such as the multi-look amplitude detector, the multi-
look log detector, and the like are not optimal and inherently result in some detection 
loss. 
 
Secondly we have shown that for temporally correlated clutter, the use of a multi-look 
whitening process provides a target gain and improves the detection. The higher the 
correlation, the larger the target gain. The target gain comes from the difference 
between the spectrum of the correlated clutter and the spectrum of uncorrelated target 
signals (a non-uniform spectrum against a uniform spectrum), providing a second 
characteristic (in addition to the intensity) for discriminating the target from the clutter. 
On the other hand, if both the clutter and the target signals are individually 
uncorrelated (the cross-correlation between the two is always zero), each of them has a 
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uniform spectrum, and there is only one characteristic (intensity) that can be employed 
in the detection. Therefore the event of the uncorrelated Gaussian targets embedded in 
the uncorrelated compound clutter represents the worst scenario in terms of detection. 
If the correlation of the target signals is the same as the correlation of the clutter, a 
treatment of de-correlation leads to the same processing for the uncorrelated target in 
the uncorrelated clutter. 
 
Lastly, spatially correlated non-Gaussian clutter may be able to provide some constant 
false-alarm rate (CFAR) gains. The CFAR gain is dependent on the estimate of the local 
mean. For this analysis we have examined the use of the linear autoregressive 
technique and derived the optimal weights for estimating the local mean of clutter. The 
autoregressive estimation is optimal under the linear assumption and better than the 
traditional cell-averaging estimation. The optimal estimation (under the linear 
assumption) of the clutter texture has in turn resulted in a further significant detection 
improvement (a few dB) for highly spatially correlated K-distributed clutter compared 
to the traditional cell-averaging estimation. 
 
This work was carried out in support of the ADF’s Air 7000 Project. 
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1. Introduction  

In a journal paper, ‘Optimal coherent radar detection in a K-distributed clutter 
environment’ (Dong 2012), we have proposed an optimal detector for coherent detection 
against K-distributed clutter. This report develops optimal and near optimal detectors for 
non-coherent detection. 
 
In the past, radar systems had relatively low resolution capabilities, and the Gaussian 
clutter assumption was a valid model for the clutter. With the advances in radar 
technology, the resolution capabilities of radar have been greatly improved in recent years. 
Clutter collected using high resolution radar systems exhibits non-Gaussian behaviour. 
The associated problem of optimal detection in a non-Gaussian background remains to be 
solved. The compound K-distribution, for instance, is a non-Gaussian distribution 
commonly used to model radar sea clutter; one of the milestone findings in radar clutter 
analysis and research in resent years (Ward et al. 2006).  
 
Researchers have been studying the optimal coherent detection of radar targets embedded 
in compound-Gaussian clutter for many years (Sangston et al. 2010; Sangston and Gerlach 
1994; Sangston et al. 1999; Gini et al. 1999; Farina et al. 1997; Gini et al. 1998). While the 
matched filter is optimal for Gaussian clutter, the paper (Dong 2012)  shows that the 
proposed optimal detector for K-distributed clutter significantly improves the detection 
compared to the matched-filter if clutter is highly spiky (i.e., K-distributed clutter with a 
small shape parameter). Therefore, there seems a need to investigate the optimal non-
coherent detection against the K-distributed clutter. 
 
Non-coherent detection against K-distributed clutter has received equal attention. 
Armstrong and Griffiths (1991) studied detection of fluctuating targets in spatially 
correlated clutter, but their study focused on the performances of cell-averaging (CA), cell 
averaging greatest of (CAGO), and ordering statistic (OS) constant false-alarm rate (CFAR) 
processors and did not discuss the issue of optimal detection. Watts, Ward and Tough 
studied CFAR loss and CFAR gains associated with the K-distributed clutter (Watts 1996; 
Watts et al. 2007; Watts 1987). It has been found that for the compound Gaussian clutter, 
such as K-distributed clutter, CA-CFAR can provide a CFAR gain, provided that the 
texture of clutter (underlying mean) is correlated (Watts 1985). The higher the correlation, 
the larger the CFAR gain. Watts (1985) thus proposed a concept of ‘ideal CFAR’ which 
means that if the exact mean of the clutter for the cell under test (CUT) is known or 
estimated by other means, the best performance can be achieved. Based on this concept, 
Buccuarelli et al (Bucciarelli et al. 1996) proposed to use the maximum a posteriori 
estimation in the logarithm domain (LMAP) to estimate the local mean for the CUT. They 
found that the performance of LMAP-CFAR outperforms CA-CFAR especially when the 
correlation of the texture is high. 
 
A pulsed Doppler radar, equipped with a single transmitter and a single receiver, usually 
collects two-dimensional data, one dimension is time (separated by pulses) and the other 
is range (separated by range bins). This kind of data is often referred to as multi-look data. 
The associated detection problem is how to process this two-dimensional data to achieve 
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the detection goal. Apparently the above studies of non-coherent detection only consider 
the processing in the range domain.  
 
Conte et al (1999) proposed a generalised likelihood ratio test (GLRT) model for the 
optimal incoherent detection of Swerling II targets in the compound K-distributed clutter. 
However the model assumes that for the  hypothesis only the first portion of an 
incoherent pulse train contains the clutter and target signal, and the second portion the 
pulse train contains clutter only. This condition does not seem to be robust to an unknown 
target location. 

1H

 
In this report we first consider the processing in the time domain. Different assumptions 
for target signal and clutter lead to different designs of detection scheme in order to 
achieve the optimal and near-optimal performance. This report considers Swerling II 
model as the target model, i.e., target RCS is independent from pulse to pulse and varies 
with Gaussian. For such a radar target, coherent detection is not appropriate, because 
target signal’s phase varies randomly, and both target signals and clutter have a uniform 
spectrum in the frequency domain. Often we need to detect the intensity of the target 
signals. The intensity is enhanced by multiple look non-coherent integration. For Gaussian 
clutter, the multi-look intensity averaging processing is optimal. However whether it is 
still optimal for non-Gaussian clutter is remains to be answered. This report tries to derive 
optimal and/or near optimal detector from the Neyman-Pearson principle (Kay 1998, 
page 174). 
 
The unwanted signals that need to be considered in the maritime environment include 
echoes from the sea surface plus thermal noise of the radar receiver. In this report, the 
unwanted signals are assumed to be represented by a compound K-distribution (this is 
justified in Section 2). We derive optimal and near-optimal detectors based on the 
Neyman-Pearson principle in Section 3. The performance of optimal and near optimal 
detectors for temporally correlated clutter is also analysed.  
 
Secondly we study the processing in the range domain. Specifically we consider in 
Section 4 the non-coherent detection for the spatially correlated clutter. We use the 
autoregressive (AR) technique to optimally estimate the texture of clutter. That in turn 
significantly improves the detection compared to the traditional CA processing.  
 
 

2. Justification of K-distributed Clutter 

In a maritime radar surveillance environment, sea clutter has been verified, through 
numerous trials, to fit with the compound K-distribution for most conditions (Ward et al. 
2006; Crisp et al. 2006; Dong and Merrett 2010; Greco and Gini 2007; Farina et al. 1997). 
Horizontally polarised higher resolution sea clutter may even have a heavier tail in its 
probability density function (pdf) and fits better with other distributions, such as KA 
(Watts et al. 2005), KK (Dong and Haywood 2007) and Pareto (Farshchian and Posner 2010) 
distributions. This report assumes sea clutter to be K-distributed. The compound  
K-distribution is composed of two components, a fast-varying component, referring to 

UNCLASSIFIED 
2 



UNCLASSIFIED 
DSTO-TR-2785 

speckle and a slowly-varying component, referring to the underlying mean or texture. The 
fast-varying component is a zero mean, unit variance complex Gaussian process 
modulated by the slowly-varying component, whose intensity is gamma distributed 
(Ward et al. 2006). 
 
Thermal noise, according to its nature, is often modelled by a Gaussian random process. 
The distribution of the sum of the K-distributed clutter and Gaussian thermal noise 
unfortunately does not have closed-form. To overcome this, Watts (1987) has 
approximated the combined distribution as a new K-distribution, by equating their 
intensities and variances. In other words, the combined distribution of a K-distribution 
with parameters of c  (mean intensity) and c  (shape parameter) and a Gaussian thermal 

noise with parameter  (variance or mean intensity) is approximated as a new K-
distribution with parameters of 

2
  and  . The new parameters   and   are determined 

by equating the mean and the variance of the two distributions (Watts 1987). Through 
numerical simulation, we found that this approximation provides very good agreement 
between the theoretical and data distributions for a wide range of Gaussian signals from a 
very weak thermal noise (very small signal-to-clutter ratio (SCR)) to very strong Gaussian 
target signals (very large SCR) (see Appendix B for details). 
 
Sea clutter data, whose true distribution is unknown, when received by a radar system 
includes the thermal noise of the radar. Consequently the estimated mean and shape 
parameters will automatically be for the combined distribution. Therefore, the undesired 
signals considered in this report only have a single component, the combined compound 
K-distributed clutter.  
 
 

3. Optimal Detector for Non-Coherent Detection 

3.1 Uncorrelated Clutter 

In order to employ the Neyman-Pearson principle to indentify the optimal detector we 
need to generate a statistical representation of the target embedded in the clutter 
distribution. The mathematical analysis for the case under consideration, a Gaussian target 
embedded in K-distributed clutter plus noise is provided in Appendix B. 
 
Having approximated the distribution of Gaussian target embedded in K-distributed 
clutter, we are now in a position to discuss the associated optimal detector for non-
coherent detection. The multi-look case means that multiple measures  , 
with respect to pulse, for each range bin are available. We want to derive a detection 
scheme which is optimal, i.e., the probability of detection is maximum for a given false-
alarm rate.  

],[nx Nn ,,1

 
The Neyman-Pearson principle (Kay 1998, page 174) states that to maximise a probability 
detection  for a given probability of false-alarm, the detection threshold is based on the 

likelihood test ratio of, 
dP
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where  and  are null and alternative hypotheses of absence and presence of target 

signal. We assume that, 
0H 1H

 
(a) the clutter parameters, namely, the mean and the shape parameter, are known, or 
can be estimated from the secondary data;  
 
(b) during the multi-look sampling period the slow-component of the K-distributed 
samples remains unchanged; and  
 
(c) multi-look samples are independent (the correlated case is discussed later).  
 

Since the distribution under  is approximated by another K-distribution (see Appendix 
B), the marginal probability density function (pdf) is (

1H
Sangston et al. 2010), 
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where )(p  is the gamma distribution of the slowly-varying underlying component: 
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where   is the shape parameter, 

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b ,  is the intensity mean. The integral 
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The likelihood ratio test (LRT) of (5) is a non-linear function of measure A  and the design 
of the optimal detector based on (5) is difficult as the pdf of )x(ln  with respect to 
measure  is unknown. Next we examine how the LTR of A (5) behaves and consequently 
construct a near-optimal detector.  
 
Since the marginal pdf  is only a function of measure A , if we replace  

by , we find that the corresponding LRT of 

);( iHp x

N/

z

);( iHp x

);( iHzp

); iHz

N N
n |1

1 


); iHz

(5) remain unchanged, where 

 is the pdf of multi-look K-distributed data given by (p

z

(p

(B6) in Appendix B, and 

. The advantage of using this replacement is that the pdf of 

 can be plotted against . In another word, the LRT is replaced by, 

Anx |][ 2 

 


0

1

);(

);(
)(

0

1

H

H

Hzp

Hzp
z 

  (6) 

 
One may verify (6) and (1) are identical, i.e., )(ln)ln z (x . 
 
Figure 1 shows the LTR )(ln z  varies against the measure  given parameters of z 2.1 , 

0.1 ,  and . Initially, it seems difficult to understand the curve. For 
instance, if one selects 

10N dBSCR 6
)(ln z 0  as a threshold (the selection of the threshold only 

depends on ), then the optimal detector only declares presence of target when the 

measure  falls in a certain region (between 3.73dB and 14.81dB). It is easy to understand 
that the optimal detector rejects  when measure 

faP

z

1H z  is low ( dBz 73.3 ). However, why 

does the optimal detector also rejects  when measure is high ( )? The next 
paragraph explains. 

1H dB81z .14
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Figure 1: LTR )(ln z  against measure .  
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Shown in Figure 2 are pdfs of multi-look clutter and multi-look target plus clutter, 
respectively, for the given parameters. The pdf’s are shown on linear scale and log scale, 
respectively. Shown in the figure is also the LTR. Now the interpretation of LTR curve 
becomes clear. When z  value is low,  is higher than , and the difference 

gradually decreases with increasing in 

);( 0Hzp );( 1Hzp

z , and reaches a point , where 

. On the log scale, LTR monotonically increases and reaches 0  at . 

After  p ecomes higher than ;(zp LTR continues its monotonic increase 

and reaches its peak where the ratio of the two is maximum. After that point, though 
);( 1Hzp igher than );( 0Hzp o decreases. The LTR curve starts dropping 

from its peak till reaching 0  at 2  where again (p

1T

).

);();( 1101 HTpHTp 

1T , );( 1Hz  b

 is still h

1T

)0H

, the rati

T

, so 

; 122 HTT (); 0 pH   After T , 

again becomes higher than , as the distribution of  has a longer 

and heavier tail, according to the given conditions. Therefore, the curve LTR 
monotonically decreases after it surpasses its peak.   

2
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Figure 2: (top and middle) pdf’s of clutter and target plus clutter on linear scale and log scale, 

respectively; (bottom) LTR. The region satisfying LTR greater than 0)(ln z is also 
shown in all three plots. 
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0)(ln zSupposing we choose a threshold, , to accept as shown. This is equivalent 

 we relax the optimal condition from 

1

to accepting 1H  when );( 11 Hzp  herefore, th region ],[ 21 TT  that the optimal 

detector accepts 1H  here the pdf of clutter plus target is higher than 
the pdf of clutter and ends at the point where the pdf of clutter becomes higher than the 
pdf of target plus clutter. It can be seen that the optimal detector does what exactly is 
required, because the condition  );();( 011 HzpHzp   does not hold for  zT2 . 

 

H  

e );( 0Hzp . T

 wstarts at the point

21 TTT If  to to form a sub-optimal detector 1TT   

 Replafor accepting 1H , we need to study the ces. cing 21 TTT consequen   by 1TT   will 
theoretically increase both the false-alarm rate and the probability of detection, because, 
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ur concern is only the increase of the false-alarm rate. For the optimal detector accepting 
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lternatively, the sub-optimal detector accepting  for  accompanies a false-alarm 
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 order to have a reasonable value of  for the optimal detector, the interval 
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1H  for 21 TTT  , the corresponding false-alarm rate is, 
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A 1H 1TT 
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  fafa

T

T TT
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1 21

);();(; 000



In dP

012 TT , as  2 );( 1
T
Td dzHzpP . Because residuals of the pdf for 2Tz   is very small, 
1

fafa PP we generally have  .

14.1 faP

 For instance, for the above example, we found, 

08754.0faP  and 910 , and correspondingly, 9552.0dP  and 
10 . Therefore, relaxing the condition from 21 TTT1024.6  dP   to not, 

change either faP  or dP   for this example. 

 

 T 1T  does 

in practical terms, 

The value of will surely depends on the parameters. However, for a common radar  faP  

detection problem, it often requires a small faP  (usually 610  or smaller), and a reasonable 

P  (usually 0.5 or higher). In order to achiev 5.0);(2 
T PHzp , the interval TTd e T1 1 ddz 12   
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mu  value of in this region has to best not be too small. On the other hand, the  

small to achieve fa
T
T PdzHzp  );(2

1 0 . As shown in the abo ple, for such conditions, 

fafa PP   holds cumulative distribution function (cdf) of clutter for the 

ple is shown in 

);( 0Hzp  

ve exam

zdB

. For instance, the 

above exam

other

Figure 3. According to this cdf, to achieve a false-alarm rate of 
610 , the sub-optimal detector requires dBz 53.12 , 6

0 10);53.12(  HdBzPr . On the 

 hand, the optimal detector might 5. require 12 dB52.153   to hav
for a scenario. However, the 

e a 3dB 
interval to achieve a reasonable probability of detection 
relaxation from the optimal condition of dBzdB 52.1553.12   to the suboptimal 
condition of  zdB53.12  have, in a practi e-alarm rate of 610  
because of 9
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Figure 3: Cdf of multi-look K-distributed clutter shown as 

nsity (dB)

)1(log10 cdf ( 2.1 0.1 , , 

 

10N ). 

 
 

herefore, thT e sub-optimal detector using for detection performs, for practical cases, 1Tz   

 1Tidentical to the optimal detector using 2Tz   provided that the condition of 

012 TT  is satisfied.  

-optimal det
 

ince the suS b ector only requires , it means that the associated LTR curve 1Tz   
can be assumed to be monotonic for  z0 e of such LTR curve is, 
 

zz )(

. On

   (11) 

)0  

g 

 
The calculation of the sub-optimal 

and 

detector will become tractable, as the pdf’s of 

are known. As explained and for simplicity, the sub-optimal detector usin
(11) will simply be referred to as the optimal detector. 

(p

)  

; Hz

;( 1Hzp
the LTR of 
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The optimal detector of (11) applies to any shape parameter values. When th
param proaches infinity, it becomes the case of a Gaussian target embedded in 
Gaussian clutter. It is well-known that the LTR of 

e shape 
eter ap

ti-look detector against K-distributed clutter has been discussed by 

(11) is indeed the optimal for such a 
case. Since it is assumed that for the K-distributed clutter the underlying mean remains 
constant during the multi-look processing period, the variation of ][nx , Nn ,,1 , is 
therefore in fact a Gaussian random process for the processing period. This explains that 
the detector determined by the LTR of (11) is also optimal (in practical sense) for the K-
distributed clutter whose slowly-varying component (underlying mean) is unknown but 
remains unchanged during the multi-look processing period. Since we also assumed that 
the underlying mean is spatially (from range bin to range bin) uncorrelated, and the best 
estimate of it therefore is the global mean. The case of spatially correlated clutter will be 
discussed in Section 4.  
 
Although the above derivation results in an identical optimal detector for Gaussian clutter 
and the compound K-distributed clutter. It has a guiding meaning in research. While the 

erformance of the mulp
many researchers, here we first mathematically prove that it is also practically optimal for 
the compound K-distributed clutter using the Neyman-Pearson principle. It shows that 
detection must use the intensity data in order to obtain the optimal detection. Detection 
schemes using other data formats, such as amplitude, logarithm transform and so on are 
not optimal, and will result in some detection loss for the same false-alarm rate.  
 
Receiver operating characteristic (ROC) curves1 for the optimal detector determined by 

zz )(  are shown in Figure 4 and Figure 5 for various given parameters. It can be seen 
at for the same probability of detection, the required SCR increases substantially withth  

the increasing in spikiness of sea clutter, compared to the exponential case. For instance, 
ase of 610faP , 5.0dP  and 10for the c N , it requires a SCR=12.4dB for 2.1  

compared to a SCR=3.8dB for   (exponential case). It is understood that because of 
the spikiness, the threshold has to increase substantially in order to maintain the same 
false-alarm rate. re the t d in turn substantially decreas  
probability of detection.  One way to increase the probability of detection is to increase the 
number of multi-looks in the non-coherent processing if possible.  
 

The inc ase in hreshol es the

                                                      
1 Conventionally, an ROC curve plots  against for a given SCR. However, a plot of  

against SCR for a given  is also referred to as an ROC curve recently. This report adopts the 

latter definition.  

dP fdP dP

fdP
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Figure 5: ROC curves of the optimal detector determined by zz )(  with  and 
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Some ROC curves shown in Figure 5 were confirmed using Monte Carlo simulation. In the 
simulation, first a dataset of K-distributed clutter and a dataset of Gaussian distributed 
target signals, both in the complex domain, were generated according to the given 
parameters. The two datasets were combined together in the complex domain. After 
taking the square of data’s amplitude, multi-look average processing was followed. The 
number of measures exceeding the corresponding threshold was counted and the 
associated  was calculated. The detection performance calculated by the Monte Carlo 

simulation is shown in 
dP

Figure 6, together with the correspondingly theoretical ROC curves 
for comparison. It can be seen that they are consistent. 
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Figure 6: Confirmation of detection performance using Monte Carlo simulation. 

 
 
The performance of other detectors was investigated. In particular, we take a look at two 
other detectors, namely, the amplitude detector using the measure of , and 

the log detector using  for detection, respectively. While there are 

analytical forms of pdf and cdf for single-look K-distributed data when the data is 
measured in amplitude or in log domain (a simple pdf transform governed by 

 
 N

n nxN 1
1 |][|

2

1 10
1 |][|log10 
 N

n nxN

dydxxpxyp /)())((  ), the pdf and cdf of multi-look K-distributed data do not have 

simple analytical forms when multi-look average processing is performed for the 
amplitude or in the log domain. Therefore the performance of the amplitude detector and 
log detector for the Gaussian target embedded in the K-distributed clutter is numerically 
calculated using the Monte Carlo simulation (the accuracy of the Monte Carlo simulation 
has been demonstrated in Figure 6). Shown in Figure 7 are ROC curves of amplitude 
detector and log detector in comparison with the optimal detector, i.e., the intensity 
detector. It can be seen that neither the amplitude nor log detectors perform as well as the 
optimal detector. Parameters used in the simulation are given in the figure. Other 
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parameters were also tested, and the associated ROC curves have a similar trend to the 
result shown in Figure 7.  
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Figure 7: Performance of amplitude detection and log detection in comparison to the optimal 

detection, i.e., the intensity detection. 

 
 
3.2 Clutter with Temporal Correlation 

Definitions of temporal and spatial correlations as well as their calculations for the 
compound K-distributed clutter are discussed in Appendix C. We begin the discussion for 
temporal correlation in this subsection and leave the discussion for the spatial correlation 
to Section 4. When measure x  is temporally correlated, the associated marginal pdf 
becomes, 
 

      xMx
M

x 1
0 exp

det

1
,;  f

H

f
N

Hp 


   (12) 

 

      xMMx
MM

x
12

21 exp
det

1
,;





 sf

H

sf
N

Hp 


  (13) 

 
where  is the normalised covariance matrix of clutter with respect to pulse, the matrix 

can also be viewed as the covariance matrix of the fast-varying component of the clutter 
(See Appendix C for details), and  is the normalised covariance matrix of target signal 

with respect to pulse. 

fM

sM
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Following the derivation process shown in the previous subsection, the corresponding 
LTR for the model presented by (12) and (13) is, 
 

xMxx 11
)(  H

N
  (14) 

 
It can be denoted by, 
 

sxx ˆ
1

)( H

N
  (15) 

 
where 
 

xMs 1ˆ   (16) 
 

   1211   sff MMMM    (17) 

 
The diagram of such an optimal detector is shown in Figure 8. The N-P detector correlates 
the received signal  with an estimate of the signal . It is therefore termed an 

estimate-correlator (Kay, 1998, Chapter 5), and s  is usually referred to as a Wiener filter 
estimator of the signal.   

][nx ][̂ns
ˆ

 
 

Wiener
filter


N

1
'

'

H1

H0

x[n]

M
-1

 
 
 
 
 
 
 
 

Figure 8: Estimate-correlator for non-coherent detection of Gaussian random signal in compound 
K-distributed clutter. 

 
 
3.2.1 Case I:  sf MM 

If both clutter and target signal have the same normalised covariance matrix, 
, the above Wiener filter can be simplified to, 0MMM  sf

 
1

0
1  MM  (18) 
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This is the well-known whitening processing. The coloured (correlated) measures become 
white (uncorrelated) after the whitening processing. Since the data becomes uncorrelated 
after the whitening processing, the detection performance, including the threshold, false-
alarm rate and probability of detection are all the same as those discussed in the previous 
subsection. 
 
 
3.2.2 Case II:  sf MM 

Unlike clutter data, whose parameters can be measured or estimated from the secondary 
data, target signals are normally unknown. If there is no prior knowledge, target signals 
may be assumed to be uncorrelated, giving, 
 

   1211   IMMM  ff   (19) 

 
The matrix inversion lemma leads to, 
 

1

1

2
111 1111 












 fff MIMMM


 (20) 

 
It can be seen from (20) that owing to different correlation properties of clutter and target 
signals, the optimal processor cannot form a filter that de-correlates correlated 
measurements into fully uncorrelated measurements under either  or  hypothesis. 

Instead, the processor compromises the different correlation properties of clutter and 
target signal, and de-correlates measurements into overall least correlation to achieve the 
optimal detection. It can be shown that  for a large SCR (strong target) case.  

0H 1H

111   fMM 
 
Implementation of the Wiener filter (19) for the optimal processor, however, encounters a 
difficulty as it requires knowledge of the target signal’s intensity. Because there is no prior 
knowledge of target signals, such an optimal detector is difficult to implement.  
 
The generalised likelihood ratio test (GLRT) allows  to be estimated by the maximised 

likelihood estimate (MLE) method. The MLE of   is obtained by maximising the 

marginal pdf of 

2
2

  1,;lnmax
2

Hp 


x . 

 

     

  






 



N

n

N

n n

H
n

n

c
H

c

N

NHp

1 1
2

2

2

122
1

ln)2ln(

detln)2ln(,;ln






xE

xIMxIMx

 (21) 
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where fc MM  ,  n  and , nE Nn ,,1 , are the eigenvalues and eigenvectors of . 

To find the MLE of , we must minimise  with respect to , where 

cM
2 )( 2J 2

 

 



















N

n n

H
n

nJ
1

2

2

22 ln)(



xE

 (22) 

 
Differentiating  leads to a non-linear equation of , and there is no general 

solution. Therefore, the GLRT detector cannot be found analytically. 

)( 2J 2

 
We therefore need to find suboptimal detectors. One of suboptimal detector is to use 

 (1
fM   is an arbitrary real number), because the filter fully de-correlates the clutter to 

achieve the lowest threshold for a given false-alarm rate. This suboptimal detector also 
becomes optimal for the strong target case. Selecting 1 , the data after the whitening 
processing will become statistically identical to the case of uncorrelated clutter discussed 
in Subsection 3.1 under hypothesis , so that the threshold setting will be unchanged. 

The whitening filter, however will affect the measurement of target signal which in turn 
alters the detection. 

0H

 
For uncorrelated Gaussian target signal vector , the mean measurement of multi-looks is tx

  2NE t
H
t xx . When the whitening filter is used, the measurement becomes, 

 

     



N

n n
ftf

H

tf trE
1

2212/12/1 1


MxMxM  (23) 

 
where   denotes trace of matrix and  tr n , Nn ,,1 , are eigenvalues of . Because fM

   N
n  nf Ntr 1M , we immediately have, 

 

N
N

n n


1

1


 (24) 

 
The equal sign holds if and only if 11  N 

1,,0

 that is for the uncorrelated case of 

. Therefore, when clutter is correlated and the whitening filter is used to fully de-

correlate the correlated clutter, the whitening filter over the uncorrelated Gaussian target 
signal always results in a target gain. For instance, if the correlation coefficient is a 
geometric series, i.e., , 

IM f

n
n    Nn  (such as )exp( nn   , 0  is a 

constant)  then we can show, 
 

 
2

2
1

||1

||)2(







 NN
tr fM  (25) 
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The corresponding target signal gain will be, 
 

)||1(

||)2(
2

2








N

NN
g  (26) 

 
The proof of (25) may be found in Appendix D. Therefore, the higher the correlation, the 
higher the target gain. The pdf of  will not be gamma, and can be derived 

using the method given in Appendix E if desired. 
tf

H
tz xMx 1

 
The reason we obtain a target signal gain by applying the whitening filter may be 
explained in this way. When both target signal and clutter are uncorrelated, the intensity 
estimation is the only way to detect the presence of target signal. However when clutter is 
correlated, its spectrum is not uniformly distributed anymore, whereas the uncorrelated 
target signal has a uniformly distributed spectrum. In other words, the difference in 
spectra, if being utilised can improve the detection (or equivalently, providing a target 
signal gain). The function of the whitening filter in the spectral domain is to multiply a 
least coefficient to the largest power spectral component and a largest coefficient to the 
least power spectral component so that the filtered data has a uniformly distributed power 
spectrum. Applying the same coefficients to the uniformly distributed power spectral 
components (uncorrelated target signal), however, provides a gain. As an illustration, 
Figure 9 depicts power spectra of the correlated clutter and the uncorrelated target signal, 
respectively ( ). As shown in the figure, the original SCR is, 6N
 

 5.0
12

6

5.05.01352

111111





SCR   (27) 

 
The whitening processing is to find a set of coefficients so that the spectrum of clutter after 
filtering becomes uniformly distributed while maintaining the integral of the power 
spectrum (the total power) unchanged. Such a set of coefficients is, 

. However the same set coefficients when applied to the 
spectrum of uncorrelated target signal generates a gain, as the SCR after filtering 
processing becomes, 

 4423/25/21 

 

1
222222

4423/25/21





SCR  (28) 

 
Comparing (27) and (28), the generated gain is 2 (3dB). From this example, we can also see 
that the higher the correlation, the higher the target signal gain, as indicated previously.  
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Figure 9: Power spectra of (a) correlated clutter and (b) uncorrelated target signal. 

 
 
In conclusion, if target signal and clutter have different correlation properties, and there is 
no prior knowledge about the target signal, the GLRT detector cannot be found. One of the 
sub-optimal detectors for the uncorrelated Gaussian target signal embedded in the 
correlated K-distributed clutter is to use the inverse of the normalised covariance matrix of 
clutter as the whitening filter (this sub-optimal detector becomes optimal for large SCR 
targets). After the whitening processing, the associated threshold for a given false-alarm 
rate will be the same as that for the uncorrelated clutter. On the other hand, the whitening 
process provides a target signal gain (the value of the gain is dependent on the correlation 
properties of the clutter), and hence results in a higher probability of detection compared 
to the same target signal embedded in uncorrelated clutter. In another words, the ROC 
curves discussed in Subsection 3.1 is for the worst case scenario.   
 
To demonstrate, Figure 10 compares the performance of the sub-optimal detector using 

 as the whitening filter for detecting uncorrelated Gaussian target signals embedded 

in correlated K-distributed clutter. The blue ROC curve is analytically calculated for the 
uncorrelated Gaussian target signal embedded in the uncorrelated K-distributed clutter 
with a shape parameter of 

1
fM

2.1 . The green asterisks are the result of the Monte Carlo 
simulation, which matches the theoretical results. The second ROC curve (red line with 
small circles) is the result of the Monte Carlo simulation for a case of the uncorrelated 
Gaussian target signal embedded in the correlated K-distributed clutter with the 
correlation coefficients of )nexp(n  , 1,,0  Nn 

)2/n

. The third ROC curve (broken 

purple line with small circles) is the result of the Monte Carlo simulation for a case of the 
uncorrelated Gaussian target signals embedded in the correlated K-distributed clutter with 
the correlation coefficients of exp(n  , 1,,0  Nn  . As illustrated earlier, since 

the whitening processing produces a target signal gain for the uncorrelated target signals, 
the detection for the two correlated clutter cases are improved. According to (26), the 
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associated target signal gains are 1.28 (1.1dB) and 2.05 (3.1dB) for the two correlated cases, 
respectively. Knowing the target signal gain, the associated probability of detection can 
also be approximately found from the probability of detection for the uncorrelated case2. 
For instance, the target gain for the second correlated case is 3.1dB, which means the 
probability of detection for a target having a SCR of 10dB for the correlated case will be 
close to the probability of detection for a target having an SCR of 13.1dB for the 
uncorrelated case, i.e., the third ROC curve can be approximately obtained by horizontally 
left-shifting the first ROC curve by 3.1dB. Similarly, the second ROC curve can be 
approximately obtained by horizontally left-shifting the first ROC curve by 1.1dB.   
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Figure 10: ROC comparison between uncorrelated and correlated K-distributed clutter embedded 

with uncorrelated Gaussian target signals. Two correlated cases are shown: Case I with 
correlation coefficients of )exp( nn  , 1,,0  Nn  , and Case II with correlation 

coefficients of )nexp(n  , 1,,0  N faPn   ( , 610 1 , 2.1  and  

). 10N

 
 
If target signal is temporally correlated and has a normalised correlation covariance matrix 

 that is known a priori, the target signal mean using  as the whitening filtering can 

be calculated by, 

sM 1
f

M

 

    22/112/12/12/1 sfstf

H

tf trE MMMxMxM   
                                                     

 (29) 

 
2 The pdf of the target signal after whitening processing slightly differs from the multi-look gamma 
distribution, resulting in a slightly different detection.  
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The corresponding target signal gain then can be calculated. 
 
 

4. Detection Against Spatially Correlated Clutter 

Spatial correlation is governed by the slowly-varying component of the compound  
K-distributed clutter. The spatial correlation is the correlation with respect to range bin, 
while the temporal correlation discussed earlier is the correlation with respect to pulse. 
Details of how to discriminate the spatial correlation from the temporal correlation, as well 
as how to calculate / estimate the correlation coefficients are given in Appendix C. For 
simplicity, the discussion in this section only considers the spatial correlation, as the 
temporal correlation has been discussed.   
 
The difference between Gaussian clutter and the compound K-distributed clutter lies that 
the texture (the mean of the slowly-varying component) is a constant for the former and 
fluctuates for the latter. If the local texture   were known, the corresponding N-P optimal 
detector would be (when there is no temporal correlation), 
 





0

1

1

2|][|
11

)(
H

HN

n
nx

N 



x  (30) 

 
where the threshold   is determined by the false-alarm rate, and, 
 

 NN
N

Pfa ,
)(

1



 



 (31) 

 

 ba,  is the incomplete gamma function3, defined as, . The optimal 

detector of 

  




b

ta dtetba 1,

(30) can be directly derived from the pdf of multi-look uncorrelated Gaussian 
clutter given by (B5). The detector (30) is referred to as the ‘ideal CFAR’ (Watts 1985; Ward 
et al. 2006), and its performance is identical to the optimal detector discussed in Section 3 
for the Gaussian clutter case. 
 
In the previous Section, the slowly-varying component (texture) is assumed to be fully-
correlated (remain constant) during the multi-pulse collection for the same range bin, but 
fully-uncorrelated from range bin to range bin. When the local texture  is spatially 
uncorrelated, its best estimate is its global mean  . The optimal and near-optimal 

                                                      

3 Matlab defines the incomplete gamma function in a different way, as, 


 
b

ta dtet
a

ab
0

1

)(

1
),( . 

As a result,  NNPfa ,1  . 
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processors presented in Section 3 implicitly use the global mean as the estimate of the local 
texture    because it is the best estimate when there is no correlation. 
 
 
4.1 Estimation of Local Texture 

The texture of sea clutter is believed to be highly correlated to wave and swell structures of 
the sea (Ward et al. 2006, Chapter 2), and some waves can be metres, tens or hundreds of 
metres long. This leads to the slowly-varying component to be possibly spatially 
correlated. For spatially correlated sea clutter, the local mean ̂  estimated by the 
neighbouring range bins of CUT is often a better estimate than the global mean  . As a 
consequence, using the detector (30) with the estimate ̂  as the replacement of the 
unknown parameter   may result a better detection. This is known as the CFAR gain 
(Watts 1996; Watts et al. 2007; Watts 1987; Ward et al. 2006). Whether a CFAR gain is 
achievable depends on three conditions: 
 

1. Clutter has fluctuating texture (i.e., compound non-Gaussian distributed);  
 
2. The texture is spatially correlated; and 

 
3. The local texture is estimated correctly. 

 
The CFAR gain in turn depends on the accuracy of the estimate of the local mean ̂ , and 
the spikiness of the clutter. If clutter is spiky, and its spatial correlation is high, obtaining a 
CFAR gain is possible by a proper estimation for the local texture. 
 
It should be pointed out that the application of the above method is not limited to the case 
of compound K-distribution. In fact, any compound non-Gaussian distribution whose 
texture may have different pdfs but possess the similar characteristic (e.g., constant during 
the multi-pulse collection and fluctuating from range bin to range bin and spatially 
correlated) falls in this category. 
 
As stated above, the better the estimate of the local texture ̂ , the better the performance 
of the detector. Therefore, finding the ways that make better estimates of the local texture 
̂  improves the performance of the detector. 
 
Following the idea given by Bucciarelli et al (1996), we use the linear autoregressive (AR) 
technique to estimate the local texture ̂ . Because , we can 

use the clutter intensity 

}{}||{}{}{ 2  ExEEzE f 
z  to estimate the underlying texture  . 
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(a) Before multi-look averaging processing  (b) After multi-look processing 

Figure 11: Use neighbouring measures to estimate CUT (the case of multi-look in azimuth). 

 
 
Figure 11 depicts the use of neighbouring cells to estimate the texture. As shown in Figure 

11 (b), for a multi-look CUT 2

1 0
1 |][|]0[ 


N

i
ixNz , we want to use its neighbouring cells 

to estimate its value. Using the AR technique, the estimate of  may be expressed as a 
linear combination of its neighbouring cells, as (for a general stationary and symmetrical 
random process), 

]0[z

 

 ][][]0[ˆ
1

nznzwz
L

n
n 


  (32) 

 
where  is the length of the one-side estimation window. The unknown parameters, , 

, should satisfy, 

L

,
nw

Ln ,1
 

2

,,1,
]0[ˆ]0[min zz

Lnwn


 

 (33) 

 
Among the L  unknown parameters, , nw Ln ,,1 , however, only  are 

independent, as  

1L

 ]n[][]0[ˆ
1

znzwz
L

n
n 


 leads to, 

 

2

1
1




L

n
nw  (34) 

 
Without loss of generality, we rewrite (34) as, 
 




L

n
nww

2
1 2

1
 (35) 

 
The minimisation of (33) can be found by use of the Lagrange theorem, as, 
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Inserting (32) and (34) into (36), and after some manipulation, we have, 
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where 
 

)var(

}{][][ 2

z

zEkizizE
k


 , ,1,0k , is the correlation coefficient of z .  

 
Changing the value of k  gives  1L  linear equations, which provides a unique solution 
for , . Together with nw Ln ,,2  (35), the all unknown parameters, w , , 

can be uniquely obtained.  
n Ln ,,2,1 

 
It can be shown that for spatially uncorrelated data, the weights become equal and 

, . That is consistent with the well-known CA processing. If, 

however, clutter is spatially correlated, the optimal weights are unequal. 

)2/(1 Lwn  Ln ,,1

 
 
Considering extended target signals which may occupy a few range cells, radar engineers 
often prefer to exclude a few guardian cells next to CUT when estimating CUT using 
neighbouring cells, which is shown in Figure 12. The corresponding optimal weights can 
be found accordingly using the following linear equations. 
 
 
 

... ...

Range Range
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Figure 12: CUT estimation using neighbouring cells with guardian cells. 
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where 
 

g  is the number of guardian cells at each side excluded in the estimation 
processing.  
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4.2 Results 

After the local t
 

exture of CUT is estimated, we can now use the suboptimal detector, 


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nx
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to carry out the detection, where ]0[ˆˆ0 z  

However, since the pdf of 

is the estimate of CUT’s texture obtained by the 

reviously subsection. )(x  p is unknown, the threshold for the 
o unkno

arlo simulation, the performance of the detector (39) is determined by 
e following two steps. 

lly correlated K-distributed clutter data accordingly, estimating 
its local texture, calculating the test ratio using (39), and numerically determining 

determining the probability 
of detection accordingly. The detection calculation used   samples. 

relation. 
elow we show two numerical samples to demonstrate the improvement of using the 

me the gamma distributed clutter texture has a correlation 
oefficient of, 

     

above suboptimal detector is als wn, and has to be simulated using the Monte 
Carlo simulation.  
 
Using the Monte C
th
 

1. Generating spatia

the threshold. The simulation used 910N  samples to determine the threshold, 
which ensures an absolute relative error less than 5% for 95% of time for a false-
alarm rate of 610  ( 610faP )  (Kay 1998, Chapter 2).  

 
2. Generating clutter data, adding target signal data and 

610N
 
The detection improvement (CFAR gains achieved) varies depending on the cor
B
optimal weights to estimate the local texture. We assume there is no temporal correlation 
because such correlation can be decorrelated using the technique described in Section 3. 
The spatial correlation of the K-distributed clutter is resulted from the correlation of 
gamma distributed texture. 
 
In the first sample, we assu
c
 

 3.07.0k   ,1,012/)12.0cos( kek  k  (40) 

where denotes the number of ed range
ith the fast-varying Gaussian component, and multi-look (independent looks in azimuth) 

 
k  lagg  bins. After the modulation of the texture 

w
intensity averaging processing, the resultant multi-look K-distributed clutter has a 
correlation of (refer to Appendix C for details), 
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alues of 2.1V  and  was used in the Monte Carlo simulation. The texture 

 the o l weig
10N

estimated by ptima hts determined by (37) is much better than the estimate of 
the CA window when clutter is spatially correlated. Figure 13 shows the estimates of CUT 
using these two methods in comparison with the true value. It can be seen that the 
estimates by the optimal weights follow the fluctuation much better whereas the estimates 
of the CA processing do not seem to follow the fluctuation closely.  
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Figure 13: CUT estimate by use of the optimal weights and the CA window, respectively. Data 

parameters are: 2.1 , 0.1 , 10N , and 8L . The spatial correlation is given 
by (40) and (41). 

 

sing the optimal estimates of the texture for the suboptimal detector (39), however, did 
 
U
not show a significant improvement of the detection. A close examination indicated that 
small values of the estimate ̂  could lead to large values of )(x  (see (39)), which, in turn, 
forces the threshold to be set high to maintain the desired false-alarm rate. We recall that 
false-alarms are often caused by sea spikes, e.g., the high clutter returns, if the detector 
uses a fixed threshold, and the low returns are not the concern. Therefore, it seems that 
there is no need for a close estimate for low clutter returns, and an accurate estimate is 
required only for high clutter returns. 
 
To improve the detector’s performance The estimate ̂  is modified as, 

 (42) 
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The profile of the modified estimates of the clutter texture is shown in Figure 14. The 
modification effectively eases the false-alarms produced by low clutter returns, and hence 
greatly improves the detection. Our simulation indicated that the overall performance is 
not very sensitive to the selection of the cut-off of ̂  (for instance, (42) selects 2/  as the 
cut-off value). In general, a lower cut-off value improves detection a little fo w SCR 
targets at a small sacrifice of the detection of high SCR targets whereas a higher cut-off 
value improves detection a little for mid and high SCR targets at a sacrifice of the detection 
of low SCR targets.  
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Figure 14: Profile of the modified texture. 

he performance of the suboptimal detector (39) using the modified texture estimates 

 
 
T
given by (42) is shown in Figure 15. Compared to the fixed threshold (which assumes the 
mean of clutter be known), the suboptimal detector greatly improves the detection (the 
improvement is referred to as the CFAR gain by Watts and others (Watts 1996; Watts et al. 
2007; Watts 1987)) and provides a CFAR gain about 6dB at 5.0dP . The detection using 

CA processing also achieves some CFAR gain (about 2dB at 5. 0dP ), but the proposed 

detector performs far better.  
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Figure 15: ROC comparison between the fixed-threshold and the adaptive thresholds determined by 

the optimal weights and a CA window with 8L  for the spatially correlated K-
distributed clutter with the correlation given by (40) and (41).  

 
 
In the second numerical example, we assume the gamma distributed clutter texture has a 
correlation coefficient of, 
 

2/k
k e       (43) ,1,0k

 
Obviously, this correlation is much lower than that of the first example. Again, the multi-
look K-distributed clutter will have a correlation coefficient specified by (41). The 
performance of the suboptimal detector (39) using the modified texture estimate given by 
(42) is shown in Figure 16, together with the performances of the CA window and the 
fixed threshold. It can be seen that the proposed processor is still able to provide a 
moderate CFAR gain (about 2dB at the 5.0dP ), whereas the CA processor performs 

approximately the same as the fixed threshold.    
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Figure 16: ROC comparison between the fixed-threshold and the adaptive thresholds determined by 

the optimal weights and a CA window with 8L  for the spatially correlated K-
distributed clutter with the correlation given by (43) and (41). 

 
 
It is worth noting that the achievable CFAR gain depends on the correlation and the shape 
parameter. The higher the correlation and smaller shape parameter, the greater the CFAR 
gain. If there is no correlation, there will be no CFAR gain at all. Instead, a CFAR loss will 
occur. Because for spatially uncorrelated clutter, the best estimate of the local mean is the 
global mean, and using a limited size of the CA window to estimate the local mean 
inherently associates with a loss (the optimal weights becomes identical to the CA window 
for the spatially uncorrelated clutter).  
 
‘Ideal CFAR’ proposed by Watts (1985) is the theoretical upper bound a CFAR processor 
could achieve for spatially correlated non-Gaussian clutter. However, how to find the 
unknown ‘true’ clutter texture remains unsolved. This section uses the linear AR technique 
to estimate the unknown clutter texture. Theoretically, the estimate is the optimal for the 
given size of the window and the linear regression model. The estimated texture is then 
modified to mitigate possible false-alarms caused by low returns. It has shown through 
numerical examples, the proposed suboptimal detector is able to provide a much higher 
CFAR gain compared to the traditional CA processor for spatially correlated non-Gaussian 
clutter.  
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5. Summary 

Optimal non-coherent radar detection of Gaussian targets (Swerling II model) embedded 
in the compound K-distributed clutter has been investigated. The derived optimal 
detector, under the sense of the Neyman-Pearson principle is the well-known square-law 
detector. This is because the underlying texture of the compound K-clutter remains 
unchanged during the multi-pulse averaging processing period according to the 
assumption, so that the clutter actually undergoes a Gaussian random process during the 
period of multi-pulse collection. While the derived optimal detector is not new, the 
derivation itself has a guiding meaning. As the detector has been rigorously derived for 
the first time using the Neyman-Pearson principle, it means there does not exist any 
detector that would perform better for the given conditions. Other detectors, such as 
multi-look amplitude detector, multi-look log detector and the like are inherently 
associated with some detection loss compared to the optimal detector, the multi-look 
intensity detector.  
 
A sub-optimal detector (it becomes optimal for large signal-to-clutter ratio targets) has 
been proposed for temporally correlated K-distributed clutter. The normalised covariance 
matrix of clutter is used to de-correlate the clutter. The whitening processing provides a 
target signal gain, resulting in an improved detection. The higher the correlation, the 
larger the target signal gain. The target gain results from the difference in spectra of 
correlated clutter and the uncorrelated target signals (a non-uniform spectrum of clutter 
against a uniform spectrum of target) that provides a second characteristic (in addition to 
the intensity) for discriminating the target from the clutter. The occurrence of  uncorrelated 
Gaussian targets embedded in uncorrelated compound clutter represents the worst 
scenario in terms of detection.  
 
If the clutter is spatially correlated, using a limited number of neighbouring range bins to 
estimate the local texture can provide a CFAR gain and improve the detection. This report 
has proposed the use of the linear AR technique and derived the optimal weights for 
estimating the local texture of clutter. The AR estimation is optimal under the linear 
assumption and results in better results than the cell-averaging estimation. The AR 
estimates are further modified to mitigate possible false-alarms caused by low clutter 
returns. It has shown that the proposed processor greatly improves the detection 
compared to the traditional CA processor for spatially correlated clutter. The higher the 
correlation, the higher the CFAR gain. However, when clutter is spatially uncorrelated, the 
global mean is the best estimate of the local texture. 
 
A summation of the optimal or near optimal non-coherent process for detecting Gaussian 
targets embedded in K-distributed clutter that may be temporally and spatially correlated 
is provided in Appendix A as a quick reference for radar engineers implementing the 
detection process.  
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Appendix A:  Summation of Optimal or near Optimal 
Non-coherent Detection Process 

This appendix is a summation of the optimal or near optimal non-coherent radar process 
discussed in this report. It serves as a quick reference for radar engineers implementing 
the detection process.  
 
Assumptions: 
 

1. Clutter has a compound K-distribution (thermal noise is included), and may have 
temporal correlation (with respect to pulse) and spatial correlation (with respect to 
range). Parameters of the K-distribution as well as the correlations are known or 
have been estimated using the sample data. 

 
2. Target is point-like and has a Gaussian distribution. 

 
For each cell under test (CUT), its neighbouring cells under the consideration is depicted 
in Figure A1. The neighbouring cells under the consideration are assumed to be target-
free.  
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Figure A1: Using neighbouring cells to estimate CUT (the case of multi-look in pulse and multi-
look in range). 

 
 
First, the temporal correlation is decorrelated and cell values are averaged for each range 
bin. This process is called multi-look process. 
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where  
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 T
lll Nxx ][]1[ x   (A2) 

 
The calculation of  is given by 1M (20). If target signal is uncorrelated or unknown,  
becomes, 

1M

 
111   fMM   (A3) 

 
where   is the clutter mean and  is the normalised temporal correlation matrix of 

clutter. If clutter is temporally uncorrelated, (A1) becomes, 
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The above process reduces the two-dimensional data window to a one-dimensional data 
window as shown in Figure A2. 
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Figure A2: Data window after multi-look processing. 

 
 
The second stage is to estimate  by symmetrical weights, as, ]0[z
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The weights are calculated by, 
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Where 

 022211122
2
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where 
   

)var(

][][ 2

z

zEkizizE
k


 , ,1,0k is the spatial correlation coefficient of z, and 

g  is the number of guardian bins on each of side of CUT. The correlation is assumed to be 
symmetrical with respect to CUT. 
 
Finally we calculate 0̂  by, 
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 (A9) 

 
The detection is then performed simply by comparing  /0ˆ  to a threshold   that is 

determined by the false-alarm rate to declare absence or presence of target in the CUT. The 
whole detection process is depicted in Figure A3.  
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Weighted average
in range

z[l]x  [n]
l
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Figure A3: Block diagram of optimal or near optimal non-coherent detection of Gaussian 
targets embedded in compound K-distributed clutter. 
 

If we let 
L

w , n , then the spatial processing becomes cell-average CFAR 

(CA-CFAR) in range. If there is no spatial correlation (correlation in range), there is no 
need to estimate ẑ  using multiple range cells. The best estimation of z  is 

n 2

1
 L,,1

]0[ ]0[   in this 
case. 
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Appendix B:  Approximation of Gaussian Signal Added 
in K-distributed Clutter 

The compound K-distribution is assumed to have two components, a fast-varying 
component, called speckle, that is a zero mean, unit variance complex Gaussian variable, 
modulated by a slowly-varying component, called the underlying mean or texture whose 
intensity is gamma distributed. The intensity of such K-distributed clutter has a pdf of, 
 

 dpzpzp 


0

)()|()(  (B1) 

 
where  is the intensity of clutter, 2|| cxz  )|( zp  is the marginal pdf of z  for a given 

underlying mean   and )(p  is the pdf of the underlying mean. Accordingly, 
 

)/exp(
1

)|( 
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 zzp    (B2) 
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where   is the shape parameter, 



b ,  is the mean clutter intensity. 

Inserting 

}|{| 2
cxE

(B2) and (B3) into (B1), we have the well-known K-distribution of 
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For multi-look processing, if during the multi-look sampling period, the slowly-varying 
component remains unchanged, the resultant multi-look processing is simplified to a 
multi-look processing of fast-varying component modulated by the unchanged gamma 
distribution. 
 
If the fast-varying component varies independently, i.e., the samples are uncorrelated, the 
mean of  exponentially distributed samples is a gamma distribution, as, N
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Inserting (B5) and (B3) into (B1), one obtains the N-look K-distribution, 
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where 


N

n
nz

N
z

1
][

1
. When , 1N (6) simplifies to (B4). 

 
Now consider the distribution of a combination of thermal noise (or in general a Gaussian 
signal) and K-distributed clutter. Assuming the Gaussian signal, and clutter each is 
independently random process, we denote Gaussian signal , and the 

conditional clutter 

),0(~ 2CNX t

),0(~|  CNX c . Since they are independent processes, and  is 

independent of 
tX

 , we have, 
 

 2,0~|)(   CNXX ct  (B7) 

 
or, 
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where 
2

1 ct xxz   is the intensity.  The pdf of  is given by, 1z

 




0
11 )()|()(  dpzpzp  (B9) 

 
Unfortunately, the above integral does not have a closed-form solution. Therefore, the 
distribution of the Gaussian target signals (or Gaussian noise) embedded in the K-
distributed clutter is unknown. For extreme cases we note that the distribution will still be 
the K-distribution for a very low SCR case and exponential for a high SCR case. The latter 
is also a K-distribution with the shape parameter of infinity. Watts (1987) has studied the 
distribution of the combined K-distributed clutter plus Gaussian thermal noise. He has 
approximated the combined distribution as a new K-distribution, with a modified shape 
parameter and a modified mean. Following this idea, we approximate the distribution of 
(B9) to a K-distribution with new parameters of  11,   whose values are derived using 
moment methods in the following. 
 
It is known that for the K-distribution given by (B4), the shape parameter is a function of 
the normalised moments. For instance, for the second normalised moment, 
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 (B10) 

 
where , once  and  are found, the corresponding 2

1 || ct xxz  }{ 1zE }{ 2
1zE 1  can be 

derived accordingly, as the distribution of  is assumed to be K. 1z
 

2222
1 }||{}|{|}|{|}{   ctct xExExxEzE  (B11) 
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To find the variance of , we first find, 1z
 

}|{|}||{4}|{|}|{|}|{|}{ 224442
1 ctctct xExExExExxEzE   (B12) 
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24 )1(2
}|{| 

v
xE c


  (B14) 

 
Inserting (B11)-(B14) into (B10), we have, 
 

 2
1 1     (B15) 

 
where  is the SCR of the data. Equation  /2 (B15) is identical to what is given by 
Watts (1987)4.  
 
Similarly, the third normalised moment of K-distribution is, 
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After some elementary algebra, (B16) becomes, 
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 (B17) 

 
When 0 , (B17) is a quadratic equation of the unknown 1  which is solvable once the 
shape parameter of clutter,  , and the SCR,  , are given. Its explicit solution is, 

A

A

2

893
1


  (B18) 

 

where 
3)1(

2)1(3






A  

 
We thus have derived two Formulae, i.e., (B15) and (B18) for estimating the shape 
parameter  . If the distribution of target embedded in clutter is exactly a K-distribution, 
the two formulae should result in an identical value. Since the true distribution of the 
combined two is unknown, and the K-distribution is only an approximation, the shape 
                                                      
4 It is noted that in the Watts’ paper (1987), the clutter-to-noise ratio (CNR) is used whereas here the 
signal-to-clutter ratio (SCR) is used.  
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parameter estimated by (B15) and (B18) may be slightly different. Often(B18) results in a 
slightly smaller value, and the corresponding distribution may fit marginally better in the 
tail region. 
 
The accuracy of using a new K-distribution to approximate the distribution of Gaussian 
target signals embedded in K-distributed clutter may be examined by comparison between 
the pdf numerically integrated by (B9) (treated as the ‘true’ distribution when the 
integration interval is sufficiently small) and the pdf of the K-distribution whose shape 
parameter is determined by (B15) or (B18). Figure 17 shows such a comparison. It can be 
seen from the figure that the K approximation is almost identical to the true distribution, 
though the upper tails of the two separate apart slightly at the far end. However, the 
accuracy of using a new K distribution to approximate the distribution of Gaussian target 
signals embedded in K-distribution clutter would be sufficient for the purpose of radar 
detection analysis. 
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Figure 17: Pdf comparison between numerically integrated (viewed as ‘true distribution’) and the K 
approximation ( 0.1 , 0.1  and dBSCR 5 ) The shape parameter 1  is 
determined by (B18). 

 
 
The Monte Carlo simulation was further used to examine the agreement between the 
assumed distribution and the actual distribution of target plus clutter. In the simulation, 10 
million ( ) samples were generated, and the histograms of data were compared with the 
pdf of the K-distribution. 

710
Figure 18 and Figure 19 show the goodness-of-fit of the 

histograms of data and the pdfs of the corresponding K-distributions. It can be seen that 
agreement between the two is superior, and hence the distribution of a Gaussian target 
embedded in K-distributed clutter can be confidently modelled as a new K-distribution. 
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(a) Pdf on linear scale to show the global goodness-of-fit  
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(b) Pdf on log scale to show the goodness-of-fit for tails 

Figure 18: Goodness-of-fit for distribution of Gaussian target embedded in K-distributed clutter 
( 0.1 , 2.1 , ). dBSCR 3
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(a) Pdf on linear scale to show the global goodness-of-fit  

-100 -80 -60 -40 -20 0 20
10

-8

10
-6

10
-4

10
-2

10
0

Intensity (dB)

P
df

 

 

Simulated data, target + clutter

Simulated data, clutter

K-distribution of (, )

K-distribution of (1
, 1

)

 
(b) Pdf on log scale to show the goodness-of-fit for tails 

Figure 19: Goodness-of-fit for distribution of Gaussian target embedded in K-distributed clutter 
( 0.1 , 2.1 , ).  dBSCR 10

 
It is found that once a Gaussian target is embedded in the K-distributed clutter, the 
distribution of the combined two becomes much less spikier than the original  
K-distributed clutter, i.e., the new shape parameter 1  is usually larger than  . If SCR is 
large, the combined distribution approaches Gaussian (the intensity approaches 
exponential), as the combined signal has a dominant Gaussian component. For numerical 
calculations, the K-distribution with a shape parameter  can be approximated as a 
Gaussian distribution (exponential distribution for the intensity). 

50
Figure 20 shows the 

shape parameter 1  as a function of   and SCR. If can be see that for moderate sea clutter 
having a shape parameter of 5 or larger, the distribution of Gaussian target plus clutter can 
be treated as Gaussian distributed once the SCR is greater than 3dB. However, for spikier 
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sea clutter with a shape parameter less than 1, the distribution of the combined two slowly 
approaches Gaussian only when SCR close or greater than 10dB.  
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Figure 20: Shape parameter 1  rapidly increases with the increase in SCR (solid-line and broken-
line curves are calculated by (B15) and (B17), respectively). 

 
 
Another way to examine whether a distribution is exponential is to examine its statistical 
properties including mean, median, variance, skewness and kurtosis. Table A1 lists these 
statistical measures for the Monte Carlo simulated 10 million ( ) samples of Gaussian 
target embedded in the K-distributed clutter. It shows that with an increase in SCR, the 
distribution of the combined signal intensity indeed approaches exponential. 

710

Figure 21 
examines the goodness-of-fit for a case of Gaussian target embedded in the K-distributed 
clutter, with parameters of 0.1 , 0.5 , dBSCR 4 . It shows that the distribution is 
almost identical to the exponential distribution. 
 
Table A1: Statistical measures of Monte Carlo simulation (106 samples) in comparison with 

theoretical values of an exponential distribution. 

 Mean  Median Variance Skewness Kurtosis 
Exponential distribution 

 /)/exp()( zzp   

  

(1.000) 
)2ln(  

(0.6931) 

2  

(1.000) 

2 6 

10 million samples of 
combined target + clutter, 

,5   dBSCR 4

1.000 0.686 1.032 2.097 6.821 

10 million samples of 
combined target + clutter, 

,5   dBSCR 10

1.000 0.692 1.004 2.014 6.107 
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(a) Pdf on linear scale to show the global goodness-of-fit  
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(b) Pdf on log scale to show the goodness-of-fit for tails 

Figure 21: Goodness-of- in K-distributed clutter fit for distribution of Gaussian target embedded 
( 0.1 , 0.5 , dBSCR 4 ). The approximated K-distribution is almost identical 
to on is the exp ential d tribution.  
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Appendix C:  Temporal and Spatial Correlations of 
Compound K-Distributed Clutter 

The compound K-distribution assumes that the data consists of a fast-varying component 
modulated by a slowly-varying component. The fast-varying component commonly refers 
to the speckle component that is a Gaussian random process with zero mean and unit 
variance. The slowly-varying component is also called underlying mean whose intensity 
has a gamma distribution. Because of the nature of these two components, caution has to 
be exercised when estimating temporal correlation and spatial correlation. 
 
C.1. Temporal Correlation (Correlation in Azimuth) 

It often needs to know the temporal correlation between data samples collected by a pulse 
train in a coherent processing interval (CPI). Often we can assume during the CPI, the 
slowly-varying component remains unchanged, i.e., the slowly varying component is fully 
correlated (this is how the compound K-distributed clutter got its name)5. The covariance 
matrix of the data is written as, 
 

 HE xxM   (C1) 
 
where expectation is with respect to the pulse for the temporal correlation, and 

 is a  vector collected by  pulses. Each measurement may 
be further written as a product of fast-varying and slowly-varying components, according 
to the model assumption, as, 

 TNxx ]1[]0[  x  1N N

 

][][ nxnx f  (C2) 

 
where  is the fast-varying component which is a complex Gaussian variable, ][nx f   is the 

underlying mean which is constant in a CPI. Because two components are independent, 
we have, 
 

      f
H
ff

H EEE MxxxxM    (C3) 

 
where  H

fff E xxM   is the covariance matrix of the fast-varying component and   the 

clutter mean. Therefore, the temporal correlation can be estimated using data samples and 
the correlation of fast-varying component is just the covariance matrix normalised by its 
mean. Under the assumption of wise sense stationary,  has a Toeplitz structure of, fM

 

                                                      
5 With reference to a maritime search radar, there is high superposition of antenna footprints with 
respect to successive pulses in a CPI, so the texture of sea clutter can be assumed to be completely 
correlated.  
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where  ][][
1 * kixixEk 


 ,       1,,1,0,  Nki  . 

 
 
C.2. Spatial Correlation (Correlation in Range) 

The correlation of texture may be found from the spatial correlation. However in order to 
find the correlation of texture, we normally need to manipulate data in the intensity (or 
amplitude) domain rather than the complex (IQ) domain. Because if we consider the 
correlation between range bin and range bin i ki  , 0k 6, 
 

     ][][][][][][][][ ** kixixEkiiEkixkiixiE ffff     (C5) 

 
However, if the interval between bin i  and bin ki   is greater than the radar range 

resolution,   0][][ *  kixixE ff . Therefore, even if   0][][  kiiE  , its value is not 

measurable using the IQ data. Therefore, the correlation of texture has to be found using 
the intensity (or amplitude) data. First we define the correlation coefficient of texture,  , 
and the correlation coefficient of  intensity,  , respectively, as, 
 

   
)var(

][][ 2


 EkiiE

k


        (C6) ,1,0k

 
   

)var(

][][ 2

z

zEkizizE
k


        (C7) ,1,0k

 
Obviously,  
 

100    (C8) 

 
Below we will find the relationship between k  and k  for 0k . 

 
Denoting  , we have, ff zxxz   22 ||||

 
                                                      
6 In order to simplify symbols, the same index notation is used to represent either temporal series 
(the index refers to pulse numbers) or spatial series (the index refers to range bin number). There 
should be no confusion under the context.   
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   ][][][][][][ kizizkiiEkiziz ffE    (C9) 

 
ince the fast-varying and slowly varying components are independent, we have, S

 
     ][][][][][][][][ kizizEkiiEkizizkii ffffE    (C10) 

 
or , the value of  0k  ][][ kizizE ff   F can be calculated by the Isserlis’ Theorem (see 

alow ls, J.M., BucholMich icz, J.V., Nicho tz, F., and Olson, C.C., “An Isserlis’ theorem for 
mixed Gaussian variables: application to the auto-bispectral density”, J. Statistical Phys., 
2009, 136, (1), pp. 89–102, for details), as, 
 
   

       ][][][][][][][][1

][][][][][][

****

**

kixixEkixixEkixixEkixixE

kixkixixixEkiziz

ffffffff

fffff f



E
      for 0k  

  (C11) 

 the interval between bin  and bin
 

i  ki   
o, s

If is greater than the radar range resolution, the 
last two items of (C11) become zer o   1][][  kizizE ff , the above correlation 

simplifies to, 
 
   ][][][][ kizizEkii E            for 0k  (C12) 

 
ombining (C6), (C7) and (C12), and noticing   }{}{ zEEC , one achieves, 

 

)var(

)var(

zkk

         2,1k  (C13) 

 
quations (C8) and (C13) indicate once we know the correlation of z  or E , the correlation 

he texture

of the other can be determined.  
 

  T  is gamma distributed, and the intensity  is single-look or multi-look 

 (C14) 
 

z
(multi-pulses) K-distributed, their variances, respectively, are, 
 

 /) 2var(

21
)var( 




N

N
z


  (C15) 

 
here is the number of multi-looks (multi-pulses). Therefore, because of the effect of w  N  

the fast-varying component that is uncorrelated and randomly varies, the correlation of 
the intensity z  is generally weaker than the correlation of the texture   that is the 
originator of the correlation. Only if the number of multi-looks reaches infinity when the 
fluctuations of the fast-varying component disappears (averaged to its mean value for 
every range bin), two correlations become identical. 
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Inserting (C14) and (C15) into (C13), we have, 
 

1


N          2,1k  (C16) 
Nkk 

 
The correctness of t
imulation, we first generated the slowly varying component, gamma, that has a shape 

he above derivation is confirmed by the Monte Carlo simulation. In the 
s
parameter of 2.1 and a correlation coefficient of, 
 

  12/)12..07.0 k
k ek        ,1,0k  0cos(3 (C17) 

The multi-look K distributed data was then g
ulti-look fast-varying Gaussian component to the correlated gamma. The correlation 

 
enerated by modulating the uncorrelated 

m
coefficient for the simulated multi-look K data was regressed and compared to the 
theoretical value, and details are shown in Figure 22.  It can be seen that the simulated 
results match the theory. Only when the number of multi-looks in the averaging 
processing (multi-pulse averaging processing) becomes large, the correlation of the multi-
look data approached the correlation of the slowly-varying component. 
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Figure 22: (a) the designated correlation of the amma component and (b) the correlation of the 
m es of 1-look and 16-looks are sh

 
or range over-sampled data, when the range interval between bin  and bin  (

g
ulti-look K data (the cas own). 

 

i ki  0k ) 
 smaller than the range resolution, the fast-varying component is 

F
is also correlated in range, 
resulting in   1][][  kizizE ff  (see (C11)). So the correlation of the intensity z  w  

jointly contributed by the fast-varying component and the slowly-varying component. 
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Appendix D:  Inverse of Covariance Matrix 

Suppose a covariance matrix is symmetrical, positive definite and has a Toeplitz structure 
of, 
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The inverse, while still be symmetrical and positive definite, does not in general have a 
specific structure.   
 
However, if k   is a geometric series, e.g.,   1,,0  Nk 
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Then the inverse of  has a simple structure as, M
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To prove (D3), we denote  for element of , jiA , A Nji ,1,  , and 
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It is not difficult to write, 
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Appendix E:  Distribution of Muli-look Correlated K-
Distributed Data 

Multi-look processing, coherently or non-coherently, is a common practice for radar data 
processing. In some cases, data are correlated. We want to derive the distribution (pdf and 
cdf) of multi-look correlated data, including Gaussian and K-distributed data. 
 
Denoting  the normalised covariance matrix of correlated complex Gaussian vector x , 
the correlation can be expressed by spherically invariant random process (SIRP) 
(

M

Rangaswamy et al. 1993; Antipov 1998). Letting t  be a mutually uncorrelated circularly 
complex Gaussian vector with vector zero mean and covariance matrix of  (  is an 
elementary matrix), the correlated Gaussian vector  may be written as,   

I2 I
x

 
tMx 2/1   (E1) 

 
where , E  and  are eigenvectors and eigenvalues of M  (note that  
is a Hermitian matrix, e.g., symmetrically  positive definite matrix, and in addition it has a 
Toeplitz structure). Obviously the covariance matrix of x  is, 
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where Nk ii /  and i , , are the eigenvalues of M . Note that , , 

are mutually uncorrelated and each is a complex Gaussian distributed,  and  is 

exponentially distributed and has a mean of . 
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( ) are mutually uncorrelated, the pdf of  can be derived from the 

so-called convolution formula (Wilks, 1962, p. 204) of, 
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where  . Using )()( 1 xpxp  (E4), we derive the pdf of  
N
i

H ix
NN

t 1
2|][|

11
xx  as, 
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The cdf is, 
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The  moment of t  is, thn
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It is known that the multi-look uncorrelated Gaussian data has a gamma distribution of, 
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, and  is the number of multi-looks.  N

 
The distribution of multi-look correlated Gaussian data is given by (E5) which is not a 
gamma distribution. However, for simplification, it may be approximated by a gamma 
distribution whose mean and equivalent number of independent looks may be found by 
equating the mean and the variance of the both distributions. In general, the equivalent 
number of independent looks is greater than 1 (fully correlated case) and less than N  
(fully uncorrelated case). For example, if the covariance matrix has a Toeplitz structure, as, 
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By equating the first and second moments of (E5) and (E8), we found the equivalent 
number of independent looks to be, 
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Figure 23 compares the exact distribution and the approximated gamma distribution for 
multi-look of Gaussian distributed data with 8N , and correlation coefficients of 

)exp( nn  . It can be seen that that approximated gamma distribution starts deviating 

from the exact distribution in the far upper tail region.  
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Figure 23: Distribution of  is approximated as a gamma distribution when 
samples are correlated. The blue dots represent data’s distribution and the green lines 
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The distribution of multi-look correlated K-distributed data can be derived in the similar 
way. We assume that the slowly-varying component remains constant during the multi-
look process, i.e., the slowly-varying component is fully correlated during the period of 
multi-looks and the fast-varying component is partially correlated and has the covariance 
matrix of . The corresponding pdf and cdf are given by M (E11) and (E12), respectively. 
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where . Similarly the exact distribution given by  
 N

i ixNz 1
21 |][| (E11) can be 

approximated by a multi-look K-distribution given by (B6) with an equivalent number of 
independent looks. Figure 24 compares the exact distribution and the approximated 
distribution for multi-look of K-distributed data with 8N , and correlation coefficients 
of )exp( nn . Although the correlation is the same as the above example, the 

approximated pdf now demonstrates much better agreement with the exact pdf. Because 
for the K-distribution, its upper tail is primarily determined by the shape parameter (the 
slow-component), and the approximation processing only affects the fast-varying 
component, but has no effect on the slowly-varying component. As a result, the 
approximation for the K-distribution is better for small shape parameters than larger ones. 
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(a) pdf on linear scale 
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(b) pdf on log scale 
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(c) 1-cdf on log scale 

Figure 24: An example of multi-correlated-look K-distribution, 8N ,  and n
n e 2.1 . The 

equivalent uncorrelated look number is 3102.6  for the approximate multi-look K 
distribution.  



 

 

 
Page classification:  UNCLASSIFIED 

 
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 

 
 

DOCUMENT CONTROL DATA 1.  PRIVACY MARKING/CAVEAT (OF DOCUMENT) 
      

2.  TITLE 
 
Optimal Detection in the K-Distributed Clutter Environment -- Non-
Coherent Radar Processing     

3.  SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L)  NEXT TO DOCUMENT 
CLASSIFICATION) 
 
 Document  (U) 
 Title   (U) 
 Abstract    (U) 
 

4.  AUTHOR(S) 
 
Yunhan Dong 
 

5.  CORPORATE AUTHOR 
 
DSTO Defence Science and Technology Organisation 
PO Box 1500 
Edinburgh South Australia 5111 Australia 
 

6a. DSTO NUMBER 
DSTO-TR-2785 
 

6b. AR NUMBER 
AR-015-478 

6c. TYPE OF REPORT 
Technical Report 

7.  DOCUMENT  DATE 
December  2012 

8.  FILE NUMBER 
eg: 2009/1034056 
 

9.  TASK NUMBER 
CDG 07/040 

10.  TASK SPONSOR 
DGAD 

11. NO. OF PAGES 
53 

12. NO. OF REFERENCES 
26 

13. DSTO Publications Repository 
 
http://dspace.dsto.defence.gov.au/dspace/    
 

14. RELEASE AUTHORITY 
 
Chief,  Electronic Warfare and Radar Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 
 

Approved for public release 
 
 
OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 
16. DELIBERATE ANNOUNCEMENT 
 
No Limitations 
 
17.  CITATION IN OTHER DOCUMENTS        Yes 
18. DSTO RESEARCH LIBRARY THESAURUS   
 
Optimal Detection; K-Distribution; Non-Coherent Radar Processing. 
 
19. ABSTRACT 
Non-coherent detection of Gaussian targets (Swerling II targets) in the K-distributed clutter environment is investigated. The optimal 
detector is derived based on the Neyman-Pearson principle. It is shown to be the well-known square-law detector. Amplitude detector, 
log detector, and the like are not optimal, and result in some detection loss. Temporally correlated clutter provides a target gain, and 
improves detection. The higher the temporal correlation, the higher the target gain. Spatially correlated non-Gaussian clutter can also 
provide a CFAR gain. The autoregressive technique is used to optimally estimate the texture of the clutter. That in turn significanly 
improves the detection compared to the traditional cell-averaging processing. 
 

Page classification:  UNCLASSIFIED 

  


	ABSTRACT
	Executive Summary
	Author
	Contents
	Acronyms
	1. Introduction 
	2. Justification of K-distributed Clutter
	3. Optimal Detector for Non-Coherent Detection
	3.1 Uncorrelated Clutter
	3.2 Clutter with Temporal Correlation

	4. Detection Against Spatially Correlated Clutter
	4.1 Estimation of Local Texture
	4.2 Results

	5. Summary
	Appendix A:  Summation of Optimal or near Optimal Non-coherent Detection Process
	Appendix B:  Approximation of Gaussian Signal Added in K-distributed Clutter
	Appendix C:  Temporal and Spatial Correlations of Compound K-Distributed Clutter
	C.1. Temporal Correlation (Correlation in Azimuth)
	C.2. Spatial Correlation (Correlation in Range)

	Appendix D:  Inverse of Covariance Matrix
	Appendix E:  Distribution of Muli-look Correlated K-Distributed Data
	DOCUMENT CONTROL DATA

