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ABSTRACT

Latent Dirichlet Allocation (LDA) is a scheme which may be used to estimate
topics and their probabilities within a corpus of text data. The fundamen-
tal assumptions in this scheme are that text is a realisation of a stochastic
generative model and that this model is well described by the combination of
multinomial probability distributions and Dirichlet probability distributions.
Various means can be used to solve the Bayesian estimation task arising in
LDA. Our formulations of LDA are applied to subject matter expert text data
elicited through carefully constructed decision support workshops. In the main
these workshops address substantial problems in Australian Defence Capabil-
ity. The application of LDA here is motivated by a need to provide insights
into the collected text, which is often voluminous and complex in form. Addi-
tional investigations described in this report concern questions of identifying
and quantifying differences between stake-holder group text written to a com-
mon subject matter. Sentiment scores and key-phase estimators are used to
indicate stake-holder differences. Some examples are provided using unclassi-
fied data.
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Numerical Algorithms for the Analysis of Expert Opinions
Elicited in Text Format

Executive Summary

This report describes the motivation, scope and outcomes of a recent Defence Science
and Technology Organisation (DSTO) research collaboration with Industry, intended to
develop a specialised computer-based text analysis capability. In March of 2011, a formal
research agreement was struck between the Joint Operations Divsion (JOD) and the Na-
tional ICT Australia (NICTA). Fundamentally this agreement was aimed at developing a
specific text analysis capability, with particular emphasis placed upon examining collec-
tions of text-format expert opinions, each of which concerned a given defence capability
issue. Here the term text analysis might include: identifying a finite number of key topics
in a text corpus and their relative weightings, or, some quantitative measure of difference
between stake-holder group opinions on specific common issue etc.

The primary motivation for this work is derived from text-data volume & processing
issues arising in the Joint Decision Support Centre (JDSC). The JDSC was established in
March of 2006 and is one component of a unique collaboration between DSTO and the
Capability Development Group (CDG). Part of the JDSC’s core program of work concerns
providing decision support to current projects listed in the Defence Capability Plan (DCP).
The common vehicle for this support is a facilitated defence capability workshop. Such
workshops typically run for 2-4 days and may include up to 40 attendees, consisting of
technical SMEs, Australian Defence Force (ADF) staff and representatives from various
stake-holder groups. These workshops are carefully designed to address specific defence
questions and to elicit, record and analyse expert opinions. Note, it is important to
understand that the JDSC’s scope here best ‘approximates’ what is known as the Expert
Problem as its described in the Taxonomy due to French [Fre85]. Briefly, the Expert
Problem is defined as follows:

Definition 0.1 (French, 1985). A group of experts are asked for advice by a Decision
Maker (DM) who faces a specific real decision problem. The DM is, or can be taken to
be, outside the group. The DM takes responsibility and accountability for the consequences
of the decision. The experts are free from such responsibility and accountability. In this
context the emphasis is on the DM learning from the experts.

In our context the relevance of French’s definition is primarily expressed in the last
sentence of his definition, emphasising the DM learning from experts. Consequently, JDSC
decision support workshops are orientated towards informing Defence Decision Makers
though workshops and their outcomes. JDSC workshop data are generally of two classes:
1) numeric, such as voting scores or quantitative preference rankings, or 2) text data
collected through network-based text collection software. The text data collected at JDSC
workshops is usually rich in content, but significant in volume. Ideally, this data should be
analysed both in situ, that is during a given workshop, and off-line post-workshop. The
main tasks here are data reduction and visualisation, that is, to compute an accessible
summary visualisation of valuable information inherent in a corpus of text likely to inform
Defence Decision Makers. It should also be noted here that while the motivation for
this project originated from the inherent needs of JDSC workshops, the outcomes of this
project are not limited to JDSC related activities.
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The main outcomes detailed in this report concern the development and capabilities
of a set of text analysis algorithms intended to support and enhance the various tasks
described above. Specific capabilities detailed here are:

• Probabilistic Topic Analysis: Topic analysis concerns identifying a finite number
of topics within a corpus of text and subsequently estimating a level of association
of document elements (such as words or phrases) to each of these topics.

• Differential Analysis: Differential analysis concerns identifying and quantifying
the differences between subsets of text, where set membership is by affiliation to
a specific stake-holder group. For example, what might be the differences between
text data generated by ARMY SMEs and Air Force SMEs on a common defence
capability issue? Further, how might such differences be computed and analysed?

• Key-Phrase Analysis: Key phrase analysis concerns identifying and ranking the
top N phrases in a document, either for the complete document or subsets of text
attributed to various stake-holders.

This report also contains technical detail on mathematical foundations of the work and
specific details on some algorithmic issues inherent in its complex estimation tasks. Finally,
an example of the algorithms at work on an unclassified text data set is provided. This
text data was collected at a special JDSC workshop including two groups only, DSTO
staff and NICTA staff. Primarily this unclassified data is included to demonstrate graphic
visualisations of the three aforementioned core tasks.
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1 Introduction

Modern algorithmic text analysis includes vast areas of research and application. Of
course much of the momentum in these areas has arisen from the enormous changes over
the last 20 years or so in the way (text) information is collected, digitised, stored and made
available through media such as the Internet. The many current domains of research and
application in text analysis are far too numerous to mention in this report (the interested
reader might consider [Ber04],[FNR03]). Instead we restrict our attention to a specific
defence task in text analysis, that is, supporting Joint Decision Support Centre workshops
by providing a means to graphically depict and summarise certain information contained
in a corpus1 of specially elicited text. What we would like to do is examine a corpus of text
collected through the JDSC workshop model. In particular we would like an estimated
topic map for a given corpus of text, showing subsets of words associated to a given
topic and the estimated probability of these associations. Further analysis detailed in this
report will consider differential text analysis on a collection of text and the identification
and rankings of key phrases. The need for a differential analysis capability arises in part
from the raison d’être motivating the JDSC, which was to ensure that defence capability
questions addressed through the JDSC are contributed to by all stake-holder groups, such
as Army, Navy, Air Force etc. Each of these attending stake-holder groups will submit text
on a common point of study, for example, the speculated operational value of a certain
class of Helicopter etc. A natural task here is to examine differences (or similarities) in
the text submitted by the different stake-holder groups. We would also like to have a
means by which we could identify and rank the main phrases in a corpus of text. The
text analysis capability described above is intended to solve two text analysis problems
in the JDSC, 1) the on-line problem and 2) the off-line problem. The on-line problem
concerns developing an in situ capability which would provide the workshop facilitation
and workshop team visibility of the elicited text through summarising graphic depictions of
that text. The intention is to provide that capability in real time as the workshops evolve.
The off-line problem refers to analysing the elicited text after a workshop is completed.
Typically 4-day workshops with 20-40 SMEs can generate a large amount of text. The
JDSC analyst needs an effective means of analysing and reporting on such text. Currently
there are many software products on the market that address various areas of text mining
and text analysis, most with emphasis oriented towards the analysis of news media, or
applications in business and marketing domains. However, few of these products directly
address stake-holder workshop elicited text data in a defence context. This situation, in
part, motivated a text analysis research program with an external partner.

The DSTO/JDSC research agreement with the National ICT Australia to develop a
text analysis capability was signed by both parties in March of 2011, with an estimated
project duration of approximately 12 months. The deliverable in this agreement included
a software capability to analyse workshop text data in three respects: topic estimation,
differential analysis and key phrase estimation and ranking. NICTA is a federally funded
Australia-wide research organisation founded in 2002 and has six core research groups,
these are:

1Here the term corpus of text refers to a relatively large structured collection/set of text
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1. Computer Vision,

2. Control and Signal Processing,

3. Machine Learning,

4. Networks,

5. Optimisation,

6. Software Systems.

Text analysis research in NICTA is carried out predominantly by the Machine Learning
area but is not limited to any one specific NICTA research laboratory. The research
project detailed in this report engaged machine learning researchers based at the NICTA
Laboratory in Canberra led by Prof. Wray Buntine. There are many diverse means by
which one can analyse text data, for example, stochastic and deterministic methods can
be applied. The approach taken in this project is stochastic and inherently Bayesian and
based upon the notion of a stochastic generative2 model. The specific modelling paradigm
used here for topic estimation is Latent Dirichlet Allocation (LDA).

1.1 Aims of this Report

This report essentially describes the outcomes of a recently completed DSTO/NICTA
research contract to develop a computer-based text analysis capability. Its main aims
were:

• to describe the eliciting of SME text data through the vehicle of JDSC workshops,

• to briefly recall some basic elements/notions in text analysis,

• to describe the technical details of the estimation schemes used, including LDA and
its numerical implementation through a variant of Gibbs Sampling

• to explain the visualisations used for: topic estimation, differential analysis and key
phrase estimation,

• to provide examples of the text analysis capability developed through an unclassified
(real) text data-set collected at a JDSC workshop and

• to provide expository appendices on some fundamental components of this work such
as Dirichlet probability distributions and Gibbs sampling.

2This class of model will be explained later.
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1.2 Organisation of this Report

This report is organised as follows. In Sections 2 and 3, we briefly describe the main
functions of the JDSC and how text is elicited at the JDSC through facilitated workshops.
These sections provides background and context only. The collection of an unclassified
text data set is described in §4.

In §5 we recall some basic notions in text analysis such as bag of words representations
and text pre-processing tasks such as the removal of stop-words etc. We also provide some
brief details on relevant elements of Natural Language Processing.

The main core of technical work in this report begins in §6 detailing the specific
theory applied for probabilistic topic modelling. This development of core technical work
continues through to Sections 7 and 8, covering differential analysis and key phrase analysis
respectively. In §9 we list possible extensions of the work described in this report. Finally,
a collection of appendices are provided for completeness, covering certain (less known)
probability distributions and some basic on Gibbs sampling. In particular the Dirichlet
distribution is discussed in Appendix D. While this interesting distribution is not in
general widely known, it plays a fundamental role in the topic estimation results in this
report.

2 The JDSC

2.1 Background

The JDSC was established in 2006 and was motivated by the need to support strategic
decision making processes concerning Defence Capability. The JDSC supports decision
processes by facilitating, enhancing and contributing to the convergence of decision mak-
ing. The primary aim of the JDSC is to provide objective, impartial, clear and timely
decision support to future defence capability decisions, including current projects listed in
the Defence Capability Plan. The DCP is defined as follows,

Definition 2.1 (DCP). The DCP outlines the Governments long term Defence capability
plans. It is a detailed, costed 10 year plan comprising the unapproved major capital equip-
ment projects that aim to ensure that Defence has a balanced force that is able to achieve
the capability goals identified in the (current) Defence White Paper and subsequent strate-
gic updates.

2.2 Function

The DCP is a living document listing defence capability projects, for example SEA1000
concerns Australia’s Future Submarine, JP2060 Army’s Deployed Health. The majority of
DCP projects are phased over time and are progressively reviewed by the appropriate com-
mittees. Further, such committees may require detailed analysis on key issues concerning
a given capability. The JDSC may be tasked to provide such analysis either through the
model of a facilitated workshop, or by other means. Capability questions examined through
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JDSC workshops may address, for example, the updating/modification/rationalisation of
a Defence Capability project, or, the introduction of a new Defence Capability. In most
of these cases the outputs of JDSC decision support includes a written report. This sup-
port is substantiated, where feasible, by broad engagement of stake-holders, the inclusion
of subject matter experts, technical reach-back into DSTO (and through it to the wider
scientific community), in-house modelling and simulation and scientific rigor. A graphic

Figure 1: Graphic depiction of the JDSC Facility. Typically each participant seated
in this facility will have an individual computer terminal for text entry. In this facility
visualisation is extensively used to create context and provide information & immersion
for the workshop participants.

depiction of the JDSC facility is shown in Figure 1. Typically JDSC workshops run for
2-4 full days and might include 20-40 specialised SMEs.

3 Eliciting Expert Opinions via Facilitated

Workshop

The techniques for elicitation and facilitation of SME workshops addressing the Expert
Problem are diverse and many. This area is and indeed well beyond the scope of this
report, however, some comments are in order to provide context. The interested reader
might refer to the recent article [PAF+07], or a relatively recent special issue of the Journal
of Operations Research Society 2007, Number 58. These papers consider what is generally
referred to as Problem Structuring Methods (PSMs). PSMs are fundamental to the facili-
tated group settings of the JDSC where pre-workshop tasks concern detailed examinations
of the defence capability issue to be studied. Ultimately a schedule must be generated for
each workshop, including a program of questions, surveys, debate topics voting schemes
etc, all intended to elicit expert information for the benefit of the remote DM. This task
is far more complex than it might first seem. Further, compounding this task is sheer &
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often elusive complexity of the problems studied at the JDSC. The unfortunate conven-
tion used to name this class of problem is to refer to them as “Wicked Problems” (see
[Pid96b][Pid96a]). Such problems are characterised in [PAF+07] as follows:

• They are one-off problems that may have some similarities with previous problems
but have never been encountered before.

• Solving Wicked Problems may cause or worsen other interconnected problems.

• There are usually many stake-holders, often holding conflicting values and perspec-
tives in the decision context.

• There is no right or wrong solution; there may be “solutions” that are perceived to
be good by some, but seldom all stake-holders.

Suffice to say, the task of eliciting expert opinions in JDSC workshops is generally difficult.
However, one can (loosely speaking) categorise typical SME responses. These responses
might be a numeric vote of preference, a binary reply accept/reject or a text input response
either offering an opinion or a text-form answer to as specific problem. It is precisely the
analysis of these text responses that we are concerned with in this report.

3.1 Computer-based Text Collection for Sets of Experts

The JDSC uses collaborative text entry software, with which participants (i.e. experts)
can enter their opinions on certain topics. The means of text entry for JDSC workshop
(co-located) participants is via a single per/person computer terminal. In most cases each
attendee/participant will have their own computer terminal. Each entry is date and time
stamped and contains a user number and so can be tagged to a particular participant.
Text responses can be a sentence, a paragraph or indeed several paragraphs. An example
of this data is given in Appendix F.

4 The Elicitation of an Unclassified Text Data

Set

4.1 Background

Given the JDSC is an Australian defence facility, much of its work, including outputs and
collected data, is naturally classified and so is not generally available to external research
partners. The work in this Technical Report is based upon a research collaboration with
NICTA, which is separate to the Department of Defence. This motivated a clear need to
develop an unclassified text data set.

On the 27th March 2011, a specially prepared text collection workshop was held at the
JDSC Canberra. This workshop involved just two stake-holder groups, JOD/DSTO staff
and NICTA research staff. The intention of this event was to generate an unclassified text-
data set, elicited through a typical JDSC workshop and to expose the NICTA researchers
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to an example of precisely how JDSC workshop text is elicited in an unclassified setting.
While the duration of this workshop was only half a working day, it did serve the purpose
of generating a useful and accessible text-data.

Prior to this workshop the JDSC Discovery Team3 contributed to the planning and
scheduling of the workshop. Here the foremost task was to decide upon an unclassified
subject matter suitable for the workshop, that is, a subject matter rich enough to engender
healthy engagement and produce a text corpus containing some diversity, such as different
opinions, polarity, sentiment and bias. The workshop ran over the course of roughly one
afternoon and engaged approximately 15 participants. Consequently this is statistically
typical of JDSC workshops which could run over 4 full days and involve up to 40 or more
participants.

4.2 Specific Elicitation Questions

The three tables below list the session-wise questions which were submitted to the par-
ticipants. In general, the unclassified subject matter from which these questions were
derived concerned; decision making, research and automated text analysis. These ques-
tions were designed to (hopefully) engender vigorous discussion and illuminate sentiment
and potential differences between the two participating groups.

Table 1: Workshop Session 1 (Decision Making)

Facilitator Question Org. Diff. Sentiment Polarised Acronyms

Q1: What are the difference be-
tween complex decision and simple
decision making?

X 7 7 7

Q2: Computer-based analytical
tools are less effective for decision
support than a human analyst?

X X 7 X

Q3: Users of decision support tools
need to know the details (theoretical
basis) to achieve effective use?

X X 7 X

Remark 4.1. The unclassified data set generated from this JDSC activity is relatively
short. Consequently its not statistically significant. The purpose of the data is largely to
depict software outputs based upon real data, that is text data in a real JDSC workshop.
In Appendix F we show the data collected from this activity corresponding to Table 2.

To provide a brief example here, we show just two responses to Question 4 which were
elicited in Session 2. This question was, How is the value of research best measured ? Two

3The JDSC Discovery Team was raised 2010. Its primary tasks concern pre workshop engagement to
identify and shape the specific fundamental defence capability questions being investigated by clients and
subsequently addressed in decision support workshops. Typical outcomes of such preparation work might
be: a workshop plan/strategy, a workshop schedule and a specific sequence of questions for the workshop
facilitator to elicit expert opinions
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Table 2: Workshop Session 2 (Research and Development)

Facilitator Question Org. Diff. Sentiment Polarised Acronyms

Q4: How is the value of research
best measured?

X X X 7

Q5: Client-based research produces
limited outcomes?

X X 7 7

Q6: Industry-based Research & De-
velopment produces more useful out-
comes than Academia

X X 7 7

Table 3: Workshop Session 3 (Text Analysis)

Facilitator Question Org. Diff. Sentiment Polarised Acronyms

Q7: Human analysis of text to cre-
ate structure is more powerful than
computer-based text analysis?

X X X 7

Q8: Unstructured data does not
help a decision making process,
quantitative fact-based data is re-
quired

X X 7 7

Q9: Other industries outside of de-
fence might benefit from automated
text analysis

7 7 7 7
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typical responses showing participant number, date stamps and time stamps are shown
below.

� 1.1 Publications and Journal Rankings
Submitted by 19 (2011-03-24 22:14:55)

� 1.2 The number of citations both primary and secondary citations
Submitted by 14 (2011-03-24 22:15:15)

5 Some Basic Elements of Text Analysis

In this section we recall some basic elements in modern text analysis and in particular text
analysis definitions and routines used in the work reported here. This material includes
some basic results in Natural Language Processing (NLP) and a brief statement of the
important theorem of Bruno de Finetti.

5.1 Representations for Text Data

It is clear that text-data is an abstract data-type and in general a difficult class of data
type with significant diversity and complexity. To proceed with any form of analysis on
text data one must first decide upon a suitable representation for text such that the text
in question can, for example, take values in a space and thereafter be examined through
pattern recognition, applying metrics, or statistical analysis etc.

There are numerous representations available for text, some deterministic and some
stochastic. To fix some basic ideas we start with a deterministic representation and make
use of geometric ideas in Euclidean space and linear algebra.

5.1.1 Deterministic Models for Text Data

The most common deterministic model for text is the vector space model due to G.
Salmond4 (see [SM86], [SWY75]). The Vector space model and it’s numerous variants,
essentially characterise a given document by a point in Euclidean space, that is, document
i, written Di ∈ Rp, is defined by the vector

Di ∆
=
(
m i

1,m
i
2, . . . ,m

i
p

)′
. (1)

Here the components m i
j might indicate weights for importance of terms within the docu-

ment and typically would be computed by combination of a document-importance weight
and corpus-importance weight. The convention is to consider a local (document level)
weight and a global (corpus level) weight, that is, for some term (typically a word) la-
belled j, we compute

mj
∆
= ` ij × gj . (2)

4As an aside, there is a curious history with this work and its appearance in the published literature,
see the text [Dur04].
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There are numerous schemes in the literature to compute ` and g, see the texts [FBY92],
[Kow97]. The primary application of the vector space model has been in Information
Retrieval (IR). Put simply, an IR system matches user queries (formal statements and
information needs) to documents stored in a database. Figure 2 shows a simple example
of two documents in a Vector space and a “query” in its corresponding vector form. With
this model one might define distance (from the document in question) to the query vector
through the angle, or through the euclidean norm. As a text analysis example one might
convert all document vectors to unit vectors and consider the pattern of points resulting
on a unity-radius hypersphere. Presumably a variety of algorithms might then be applied
to classify subsets of documents/points in a corpus or to perform cluster analysis (see
[Bis06] and [Bra89]). If a corpus of documents is mapped to a vector space through the

Figure 2: A simple example of two documents and a query in vector space form.

representation at (1), then one might collect these vectors as columns of a matrix. This is
the usual starting point for matrix-based methods of text analysis such as Latent Semantic
Indexing (LSI), see [Ber04].

Remark 5.1. There are known limitations with vector space models which are well docu-
mented in the literature. One concerns semantic sensitivity, that is, documents with similar
context/meaning but which use different vocabularies will not be associated resulting in a
failure to conclude a match.

5.1.2 Stochastic Models for Text Data

Stochastic models for text are perhaps better known than deterministic models. Indeed
the origin of the stochastic processes known as Markov chains, (due to Andrei Andree-
vich Markov, see [HS01]) was Markov’s investigation into a two-state chain (vowels and
consonants) derived from Pushkin’s poetry. Moreover, its easy to imagine how such an in-
vestigation might be extended beyond characters to parts of speech, such as prepositions,
nouns and adjectives etc. If one considered English text as a sequence of such parts, then
a dependent stochastic process such as a Markov chain might easily be modelled. For
example, the probability of a transition from a preposition to a preposition would be low,
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however the probability of a transition from an adjective to a noun would be high. An
interesting example of Markov chains applied to text is given in the article [IG01]. The
work subsequently described in this report is entirely based upon a stochastic model which
is a special type of stochastic generative model.

Remark 5.2. The essential point to note on stochastic models for text analysis is that
a corpus of documents, (or indeed a single document), is taken as a realisation of some
class of stochastic model. This is a critical assumption and is pivotal to understanding
probabilistic topic modelling.

5.2 Some Basic Definitions in NLP

There are many excellent texts dealing with NLP, for example see [MS99] and [Mit04].
This is a vast subject and well beyond the scope of this report. The inclusions below
have been chosen to give some indication about the pre-processing of our text before it is
analysed for topics etc.

Definition 5.1 (Corpus). A corpus is a structured collection of language texts that is
intended to be a rational sample of the language in question (see the interesting reference
[JT06]). A very well known corpus is the Brown corpus of the English Language which
was made available in 1960. The plural of corpus is corpora.

Definition 5.2 (Stop Words). A “stop word” is a word that is functional, rather than
carrying information or meaning. These words are sometimes called function words. Some
examples are prepositions and conjunctions. An example subset of typical stop words in
English might be {also, it, go, to, she, they}. There are many well known lists of stop
words in English available electronically on the Internet, see for example http://www.

ranks.nl/resources/stopwords.html.

Definition 5.3 (Stemming). Loosely speaking, stemming concerns identifying a canon-
ical or irreducible component of a word common to all inflections of a word. For example,
consider the conjugation of German verbs and in particular those verbs known as weak
verbs. These verbs have an irreducible component called the stem vowel. For example,
the German verb arbeiten (to work), is conjugated in the following way in Table 4, In

Table 4: A simple stemming example with German verbs

ich arbeite,
du arbeitest,
wir arbeiten.

this example the stem vowel is arbeit. A similar example in English might be; computer,
computing, computed, computation. Many algorithms for stemming are readily available
on he Internet, for example see http://tartarus.org/~martin/PorterStemmer/ and
http://www.comp.lancs.ac.uk/computing/research/stemming/.

Definition 5.4 (Lemmatisation). Lemmatisation is similar (roughly) to Stemming and
refers to an algorithmic process to identify the so-called lemma of a given word. In general
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this task is somewhat more sophisticated than stemming as it may require an analysis of
context for a specific word and also a tagging into a group, such as a noun or a verb by
using a Parts of Speech (POS) algorithm. For example a verb such as running would have
the suffix ing removed whereas, a noun in plural form such as houses, would be reduced to
house.

Definition 5.5 (Named Entities & Recognition). Named Entity recognition involves
the task of identifying proper names as they relate to a set of predefined categories of
interest. This is in general not a trivial task in NLP and encounters some immediate
problems, for example the word June, does it refer to a month or a person called June ?
The word Washington might be George Washington and it might be a state of the USA.
Sub might refer to Submarine, boat might also refer to submarine.

Definition 5.6 (Tokens and Tokenisation). The word Token has a variety of meanings,
in our context it means a convenient symbol to represent something of interest, usually
words. The task of Tokenisation is to represent text as a collection of tokens. Tokens may
be words or grammatical symbols. In most cases tokenisation relies upon locating word
boundaries such as the beginning or ending of a word. Tokenisation can sometimes be
referred to as word segmentation.

Definition 5.7 (Common Frequency/Weighting Measures). In basic text analysis
and indeed areas of cryptography, basic frequency indicators are often used for inference
and analysis, for example word or character counts and their distributions can be infor-
mative. In text analysis the two most common frequency counts used are the so-called
term-frequency (TF) and term-inverse-document-frequency counts (TF-IDF). Term Fre-
quency is just a straight count of the number of occurrences of a given term in a given
document. For example, suppose the term in question is denoted by t and the document
by D i, then this quantity is written as TFt,D i ∈ N. Note this quantity is not a corpus
level quantity. In contrast, the TF-IDF includes a measure of frequency at a corpus level,
that is, it extends TF to include occurrence counts in all documents in a corpus. To label

a single corpus of I documents, we write D ∆
= {D 1, D 2, . . . , D I}. The Inverse Document

Frequency (IDF) may be written,

IDFt,D
∆
= log

{
|D|

1 + |
{
D ∈ D | t ∈ D

}
|

}
(3)

Here | · | denotes cardinality and the addition of unity on the denominator to avoid divide
by zero errors in cases where a term does not appear. The most widely used weight, (ie
the vector components mj in equation 2), for a candidate term tj in given document D i

is

mi
j

∆
= TFtj ,D i × IDFtj ,D. (4)

The NLP community uses a variety of frequency measures such as the one at (4),
choice usually depends upon context and perhaps specific data issues. One can see from
equation (3) that its task is to attenuate the weight of common words used often. For
example “the”. This word is likely to appear in every document. This means (assuming
we disregard the unity offset in the denominator of (3)) that the quotient is unity and
hence its log is zero, given the term zero weight, as would be expected for a common word.
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Definition 5.8 (Parts of Speech (POS) Tagging). POS tagging refers to the task of
classifying individual words into parts of speech. In English, (and in German), there are
eight fundamental parts of speech, these are shown in Table 5 below. One could further

Table 5: The eight basic Parts of Speech (POS)

noun pronoun verb adjective article adverb preposition conjunction

refine this set by classifying adjectives as descriptive, demonstrative, possessive or inter-
rogative, or nouns that might be plural or singular, see [MS99] page 342. The task of
mapping given words to the types in the table above is not trivial. This task is discussed
at length in the literature and there are numerous algorithms available. Indeed the POS
tagging problem can be cast as a Hidden Markov Model (HMM) problem and solved with
estimation schemes such as the Viterbi Algorithm. A good treatment of this approach is
given in [MS99].

Definition 5.9 (Bag of Words). The notion of the so-called Bag of Words model for text
is central to all the text analysis methods described in this report. In this model (roughly)
one considers text as invariant to word order and invariant to grammar. For example,
§8.4 from the 2009 Australian Defence White Paper5 reads as follows:

In the case of the submarine force, the Government takes the view that our
future strategic circumstances necessitate a substantially expanded submarine
fleet of 12 boats in order to sustain a force at sea large enough in a crisis
or conflict to be able to defend our approaches (including at considerable dis-
tance from Australia, if necessary), protect and support other ADF assets, and
undertake certain strategic missions where the stealth and other operating char-
acteristics of highly-capable advanced submarines would be crucial. Moreover,
a larger submarine force would significantly increase the military planning chal-
lenges faced by any adversaries, and increase the size and capabilities of the
force they would have to be prepared to commit to attack us directly, or coerce,
intimidate or otherwise employ military power against us.

Taking the above extract, we first remove (identify in red) all stop words and grammatical
marks, with the following result,

In the case of the submarine force , the Government takes the view that our
future strategic circumstances necessitate a substantially expanded submarine
fleet of 12 boats in order to sustain a force at sea large enough in a crisis or
conflict to be able to defend our approaches ( including at considerable distance
from Australia , if necessary ) , protect and support other ADF assets , and
undertake certain strategic missions where the stealth and other operating char-
acteristics of highly-capable advanced submarines would be crucial . Moreover
, a larger submarine force would significantly increase the military planning
challenges faced by any adversaries , and increase the size and capabilities of
the force they would have to be prepared to commit to attack us directly, or
coerce , intimidate or otherwise employ military power against us .

5See the URL, http://www.defence.gov.au/whitepaper/
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Finally, we delete the stop words and write out the final text subset as a multiset, showing
multiplicities of repeated words,

case submarine(×4) force(×4) Government view future strategic(×2) circum-
stances necessary(×2) substantially expanded fleet 12 boats order sustain sea
large crisis conflict defend approaches including considerable distance Australia
protect support ADF assets undertake certain missions stealth operating char-
acteristics highly-capable advanced crucial larger significantly increase(×2) mil-
itary(×2) planning challenges faced adversaries size capabilities prepared com-
mit attack directly coerce intimidate otherwise employ power

Here, the blue text and its given multiplicities, might be thought of as a type of automated
speed reading text, where the filtered multiset of interest might be,{

submarine(×4), force(×4), strategic(×2), necessary(×2), increase(×2), military(×2)
}

.

Remark 5.3. The bag of words representation should not be confused with the usual
mathematical notion of a set, as it allows repeated elements. However, this representation
may be thought of as a multiset (see http://mathworld.wolfram.com/Multiset.html)
which is a set-like object allowing multiplicity of elements.

Remark 5.4. As an aside, the Bag of Words representation of text is also used in some
forms of SPAM filtering, where one “Bag” contains words in legitimate emails and another
“Bag” contains words of a potentially dubious nature.

5.3 The Notion of Exchangeable Random Variables

In what follows we will see that the bag of words representation has a statistical modelling
significance for topic estimation. In particular its invariance to orderings of words which
can be expressed through the notion of exchangeability.

Theorem 5.1 (Exchangeability, Bruno de Finetti). A finite sequence of random
variables

{
X1, X2, . . . , Xm

}
is said to be exchangeable if its joint probability distribution is

invariant to permutations. That is, for a permutation mapping of the indexes
{

1, 2, . . . , n
}

,
which we denote by π(·), the following equality (in probability distribution) always holds,{

Xπ(1), Xπ(2), . . . , Xπ(m)

}
=d

{
X1, X2, . . . , Xm

}
. (5)

Here the equality =d means equality in probability distribution. Detailed proofs of this
interesting Theorem can be found in [CT78] and [Dur11].

5.4 Specific Natural Language Processing Routines

In this section we describe some NLP routines which are used to convert raw text data
in a form amenable to basic tasks of interest, for example probabilistic topic estimation.
Most of these tasks are essentially basic pre-processing, however, schemes such as acronym
detection are important in our context given the prevalence in Defence of acronyms and
identical acronyms with different meanings.
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5.4.1 Acronym Detection Scheme

In general most modern text will contain acronyms, however text collected on a Defence
subject matter will almost surely contain acronyms. Moreover, its not uncommon in
Defence for the same acronym to have two or more distinct meanings. Consequently we
implement a scheme to identify acronyms. This scheme is used to identify and display
acronyms and also to remove all acronyms from the Bag of Words reduction of the text.
The algorithm we use is given in Algorithm 1.

Algorithm 1 Algorithm for detecting Acronyms

1. for documents i = 1 to I do
2. for words ` = 1 to Li do
3. if word is identified as a stop word, then
4. remove word
5. end if
6. if the word contains a character which is not a letter, or the period “.”, then
7. remove word.
8. end if
9. if more than half of the characters of the word are capitalised, then

10. consider word as a candidate acronym.
11. end if
12. if number of acronym names in this sentence is more then half of the words

in this sentence, then
13. remove all these words from the candidate list. {If a sentence is all

capitalised its words will not be classed as acronym}
14. end if
15. if word’s length is > 6 characters, then
16. remove word from list of candidate acronyms.
17. end if
18. end for
19. end for

5.4.2 Named Entity Recognition (NER) Scheme

The named entity recogniser (NER) code used in this work is publicly available through the
library at http://code.google.com/p/nicta-ner/. This library includes an Extractor,
which extracts all the first-letter-uppercase words from text, and combines continuous
words into phrases. The result set is then passed to a Named Entity Classifier. The
Classifier will score all the phrases and indicate if a phrase pertains to one of the following
three classes: 1) Location, 2) Person, or 3) an Organization.
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5.4.3 Named Entity (NE) Extractor

The NE Extractor is also a scheme developed by NICTA. It tokenises the text by using a
Java standard tokeniser class. This scheme is package independent and has a success rate of
the order of 75%. The NE Extractor will iterate throughout the tokens and estimate if the
tokens correspond to Named Entities. Special cases arise when estimating the first word
of a sentence, as this word is usually first-letter-uppercase. Further, a Word Dictionary
and some special rules are also implemented to determine if the word corresponds to a
name or not. The Word Dictionary is created utilising an open source word list project
(see http://wordlist.sourceforge.net) and a parts-of-speech Tagger. The Dictionary
can be used to determine if the first word in the sentence is a named entity in most cases,
however, exceptions are catered for with special rules.

An additional function of the NE Extractor is the extraction Time/Date phrases from
text. The NE Extractor can be used to determine if a single word is likely to be a
Time/Date word (for example: 21:30, 3rd, 2001, February). If a time/date phrase is
extracted from the text, this “word” will be added to a Date-Phrase-Model which iterates
to the next word in the text. This search loop will terminate if any word that does not look
like a Time/Date word appears. The Date-Phrase-Model will determine if the combination
tagged is a time/date phrase or not. For example, a phrase such as “16th” is not a date
phrase, as it’s ambiguous. However, the term “16th, February” is unambiguously a date-
phrase.

5.4.4 Named Entity (NE) Classifier

The NE Classifier we use is a scheme developed by NICTA which implements a numeric
scoring of classes based on several features. This classifier receives a phrase string as
input and returns a numeric score value. Generally two classes of features can be found
by this classifier. The first of these features will test if any key-words, or key-phrases
appear embedded within the given phrase. If the classifier returns “true”, then the phrase
contains the key-word or key-phrase in a word list. The second type of feature extracts
the information in the context such as the attached prepositions.

6 Probabilistic Topic Modelling

In general, the two basic aims or probabilistic topic modelling are: 1) to identify and rank
a finite set of topics that pervade a given corpus and 2) to annotate/tag documents within
a corpus according to the topics they concern.

Topic modelling is an increasingly useful class of techniques for analysing not only
large unstructured documents but also data that posit “bag-of-words” assumption, such
as genomic data [FGK+05] and discrete image data [WG08]. As a promising unsuper-
vised learning approach with wide application areas, it has gained significant momentum
recently in machine learning, data mining and natural language processing communities.
In this section we review fundamentals (e.g. basic idea and posterior inference) of topic
models, especially the Latent Dirichlet Allocation (LDA) model by [BNJ03] that acts as
a benchmark model in the topic modelling community.
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6.1 Probabilistic Topic Models

Probabilistic topic models [DDF+90, Hof99, Hof01, BNJ03, GK03a, BJ06, SG07, BL09,
Hei08] are a discrete analogue to principal component analysis (PCA) and independent
component analysis (ICA) that model topic at the word level within a document [Bun09].
They have many variants such as Non-negative Matrix Factorisation (NMF) [LS99], Prob-
abilistic Latent Semantic Indexing (PLSI) [Hof99] and Latent Dirichlet Allocation (LDA)
[BNJ03], and have applications in fields such as genetics [PSD00, FGK+05], text and the
web [WC06, BSB08], image analysis [LP05, WG08, HZ08, CFF07, WBFF09], social net-
works [MWCE07, MCZZ08] and recommender systems [PG11]. A unifying treatment of
these models and their relationship to PCA and ICA is given by [BJ06].

Specifically, probabilistic topic models are a family of generative6 models for uncovering
the latent semantic structure of a corpus by using a hierarchical Bayesian analysis of the
text content. The fundamental idea is that each document is a mixture7 of latent topics,
where each topic has a probability distribution over a vocabulary of words. A topic model
is a factor model that specifies a simple probabilistic process by which documents can be
generated. It reduces the complex process of generating a document to a small number
of probabilistic steps by assuming exchangeability. While the model just described is
unrealistic as a “true” model of language generation, it is interesting enough to generate
useful semantics that we can employ in understanding a collection. Probability density
mixture models are widely used in stochastic modelling, in particular Gaussian mixtures,
for example see [MP, Mak71] . To loosely fix the basic ideas here with a crude example,
we might begin by considering the probability that a given word “w′” is associated to one
of a finite collection of topics. This probability might be modelled as follows,

p(w = w′) =
K∑
j=1

p(w′ | Tj)p(Tj),

=

K∑
j=1

κjp(Tj).

(6)

Here Tj denotes topic j. The κj may be thought of as weights in a convex combination of
topic-proportion probabilities.

To “generate” a new document, a distribution over topics (i.e., a topic distribution) is
first drawn from a probability distribution over finite topic vectors. Then, each word in
that document is drawn from a word distribution associated with a topic drawn from the
topic distribution. The semantic properties of words and documents can be expressed in
terms of probabilistic topics.

6In our context the term “generative model” refers to a stochastic model used to generate typical
realisations of observed data, that is we assume there exists a stochastic model whose outputs are (loosely
speaking) a document. Such models typically have known dependencies upon hidden/latent parameters.
The usual estimation task with generative models is to apply Bayesian inference to compute/estimate
hidden variables, such as topic information etc. A classic example of this class of estimation task is the
celebrated Kalman Filter.

7Here the term mixture refers to an admixture, for example concerning population modelling see the
article [SBF+11]. Some synonyms of admixture are, blend, alloy, amalgamation.
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In what follows we take the dimensions for a topic estimation task as defined through
three index sets (K,V, I), with

K ∆
=
{

1, 2, . . . ,K
}
, (7)

V ∆
=
{

1, 2, . . . , V
}
, (8)

I ∆
=
{

1, 2, . . . , I
}
. (9)

Here K denotes the number of topics, V the size (in number of words) of the vocabulary
and I is the number of documents in the corpus being studied.

Formally, a topic model can be interpreted in terms of a mixture model as follows.
Suppose µi =

(
µi1, µ

i
2, . . . , µ

i
K

)
is a document-specific topic probability distribution, here

i ∈
{

1, 2, . . . , I
}

is an index to a specific document in the corpus. Further µik ∈ [0, 1] and

µik = Pr
(
Document i contains/concerns Topic k

)
. (10)

Suppose a real-valued V ×K (Vocabulary × Topics) matrix Φ, is a column-wise collection
of topic-specific word probability distributions. It’s important here to note that the matrix
Φ is not document-wise, rather, it applies to the entire corpus. To fix this idea, consider
three typical topics one might find in text concerning defence capability. These might be,
for example, Force Structure Review (FSR), Fundamental Inputs to Capability (FIC8) and
the topic of Submarines. At the outset one would expect that each of these topics might
weight certain words differently. An idealised example of these differences is shown in
Table 6. Continuing we write zi` ∈ K as an index/label to a specific topic-word association

Table 6: Typical(idealised) word-topic allocation probability vectors concerning some areas
of defence capability. Note that in this example FIC appears in two different topics, here
FSR and Submarine. Note also that the number of most-significant words per topic may
vary. The vertical ellipses indicate that the shown words are proper subsets of a greater
vocabulary which we denote by V .

FSR Φ{:,1}
...

...
cost 0.09
delivery 0.034
FIC 0.034
workforce 0.033
white paper 0.023
risk 0.017
scenarios 0.015
...

...

FIC Φ{:,2}
...

...
basing 0.031
facilities 0.027
major systems 0.019
organisation 0.013
personnel 0.011
support 0.011
...

...

Submarine Φ{:,3}
...

...
diesel 0.136
FIC 0.042
nuclear 0.025
periscope 0.011
deterrent 0.011
snorkel 0.009
sonar 0.02
torpedo 0.012
...

...

8FIC refers to a canonical list of components which collectively form a defence capability, for example:
organisation, personnel, facilities, command and management etc.
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for word wi`, where ` ∈ {1, 2, . . . , L i} (here Li ∈ N is the number of words in document i).
The basic statistical sampling process by which we assume a particular document might
have been created is as follows,

for ` = 1, 2, . . . , Li zi` ∼ µi (11)

w` | (zi`, Φ{:, zi`}
) ∼ F (Φ{:, zi`}

), (12)

Here and throughout this report, the shorthand notation a | (b, c) ∼ d indicates that the
random variable a, given (b, c) is distributed according to d. The function F (·) is set, in
general, to be a discrete distribution. Further, a Dirichlet distribution is assumed as a
prior for µ. The hypothetical output of the model just described would be a document of
the following form,

“Document”
∆
=
{

(w1, z1), (w2, z2), . . . (wL, zL)
}
. (13)

Remark 6.1. Its important here to understand precisely what the stochastic generative
process just described actually means. No “real” intelligible document will ever be gen-
erated from such a process, rather, a bag of words collection is generated with topic-word
association according to the probability models used. This is quite distinct from some other
more well known stochastic models, for example a discrete-time Gauss-Markov system used
in a typical Kalman filtering target tracking problem. In that setting a plausible but noise
corrupted target track is generated.

Applying standard Bayesian inference techniques, we can invert the generative process,
(described by equations (11) & (12)), to infer the set of optimal latent topics that max-
imise the likelihood (or the posterior probability) of a collection of documents. Compared
with a purely spatial representation (e.g., Vector Space Model [SM86]), the superiority of
representing the content of words and documents in means of probabilistic topics is that
each topic can be individually interpreted as a probability distribution over words, it picks
out a coherent cluster of correlated terms [SG07]. We should also note that each word can
appear in multiple clusters, just with different probabilistic weights, which indicates topic
models could be able to capture polysemy9 [SG07]. This generative process is purely based
on the “bag-of-words” assumption where only word occurrence information (i.e. frequen-
cies) is taken into consideration. This corresponds to the assumption of exchangeability
in Bayesian Statistics (see [BS94]). However, word-order is ignored even though it might
contain important contextual cues to the original content.

6.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [BNJ03], is the form of topic model considered here.
It is a fully Bayesian extension of the PLSI model, is a three-level hierarchical Bayesian
model for collections of discrete data, e.g. documents. It is also known as multinomial
PCA [Bun02]. One can show that two other popular models, PLSI and NMF, are closely
related to maximum likelihood versions of LDA [GK03b, BJ06].

9The term polysemy refers to a symbol/sign/word/phrase having a diversity of meanings. In our context
this refers to words and/or phrases which have more than one semantic meaning.
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Figure 3: A graphical model representation of Latent Dirichlet Allocation. Here the only
observed data are the words, denoted by the shaded circle containing W

µα z w

Φ

I
L

γ

K

As a fundamental approach for topic modelling, LDA is usually used as a benchmark
model in the empirical comparison with its various extensions and related models.
Figure 3 illustrates the graphical representation of LDA using plate notation (see [Bun94]
for an introduction; further details on Graphical models can also be found in [Edw00],
[Lau96b], [CDLS99] and [KF09]. In this notation, shaded and unshaded nodes indicate
observed and unobserved (i.e. latent or hidden) random variables respectively; edges in-
dicate dependencies among variables; and plates indicate replication. For example the
upper most plate is replicated K times for K topics and the largest plate is replicated I
times over the number of documents in the corpus. For document analysis, LDA offers
a hidden variable probabilistic topic model of documents. The observed data are known
word collections

w i ∆
= {w i

1, w
i
2, . . . , w

i
Li}, (14)

each corresponding to a document in the corpus of the I documents being considered. To
denote all collections of words in the corpus, that is the set of sets {w i}i=1 : I , we use the

shorthand notation W
∆
= w1 : I , where

w1 : I =
{
w1

1, . . . , w
1
L1 , w

2
1, . . . , w

2
L2 , . . . , w

I
1, . . . , w

I
LI

}
(15)

Similarly we write

z i
∆
= {z i1 , z i2 , . . . , z iLi}, (16)

for document i’s word-topic associations (these quantities are integer-valued with zi` ∈ K).

As above, the complete corpus collection of these associations are denoted by Z
∆
= z1 : I .

Finally we write µ to denote the collection of
{
µ1,µ2, . . . ,µI

}
. The two classes of hidden10

variables we consider for each document in the corpus are:

1. The topic probability distribution which we denote by the K-component vector µi

(here i labels the i-th document in the corpus)

2. The word-topic assignments which are {z i1 , . . . , z iLi}.
10Here the term “hidden” does not mean hidden as in common parlance, rather it means a quantity that

is indirectly observed.
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Further basic model parameters are the Dirichlet-prior parameters

α
∆
= {α1, α2, . . . , αK}, (17)

γ
∆
= {γ1, γ2, . . . , γLi}. (18)

These parameters are for topic and word distributions respectively. Note that for all com-

ponents of these parameters, αk ∈ R+ and γ` ∈ R+, but the sums
∑K

k=1 αk and
∑Li

`=1 γ`
are unconstrained. Additional model parameters are the word probability distributions
(per topic) as collected column-wise in the matrix Φ.

We write DirK(·) to indicate a K-dimensional Dirichlet distribution. The LDA model
assumes that documents are consequences of the following generative process:

1. For each topic k ∈ K,

(a) choose11 a word probability distribution according to, Φ{:, k} ∼ DirV (γ).

2. For each document i ∈ I,

(a) choose a document-specific topic probability distribution according to, µ i | α ∼
DirK(α).

(b) For each ` ∈ {1, . . . , Li},
i. choose a topic-word association according to, z i` | µ i ∼ Discrete(µi),

ii. choose a word according to, w i
` |
(
z i` , Φ{:, zi`}

)
∼ Discrete(Φ{:, z i

` }
).

Here, the hyper-parameter12 γ is a Dirichlet prior on word distributions (i.e. a Dirich-
let smoothing on the multinomial parameter Φ [BNJ03]). The model parameters can be
estimated from the data. The hidden variables can be inferred for each document by in-
verting the generative process, which are useful for ad-hoc document analysis, for example,
information retrieval [WC06] and document summarisation [AR08a, AR08b]. With this
process, LDA models documents on a low-dimensional topic space13, which provides not
only an explicit semantic representation of a document, but also a hidden topic decompo-
sition of the document collection [BL09].

Definition 6.1 (LDA Count Frequencies). In LDA one requires the observed counts/frequencies
for the respective multinomial probability distributions. We denote these counts by

nk
∆
=
(
nk1, n

k
2, . . . , n

k
V

)
. (19)

Here the components nkv denote the number of times word v ∈ {1, 2, . . . , V } is assigned a
specific topic k ∈

{
1, . . . ,K

}
.

Similarly we write

mi ∆
=
(
mi

1,m
i
2, . . . ,m

i
K

)
. (20)

11Here the term “choose” means a stochastic choice, that is, sample from a probability distribution.
12The term “hyper-parameter” derives from Bayesian statistics and refers to the parameter of a prior

probability distribution.
13Note the number of topics associated with a document collection is usually far smaller than the

vocabulary size, since documents in a collection tend to be heterogeneous.
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Here the components mi
k denote the number of times topic k is assigned to some word

tokens in document i. Note also that in document i, the following sum always holds,

K∑
k=1

mi
k = Li. (21)

The integer-valued quantities nkv and mi
k are functions of the integer values zi` and also

wi`, and so may be computed via indicator functions, that is,

nkv =

Li,I∑
i=1
`=1

1{zi`=k}
1{wi

`=v}
, (22)

mi
k =

Li∑
`=1

1{zi`=k}
. (23)

Given the two Dirichlet priors parametrised by α, and γ, and the observed document
collection W , the full joint probability distribution, including the the latent variables{
Z,W ,µ,Φ

}
, may be written down directly by combining the information in Figure 3,

and the probability distributions given above for an LDA generative process. This joint
probability distribution, conditioned on the Dirichlet priors α and γ, has the form,

p
(
µ,Φ,Z,W | α,γ

)
∝

(
Li∏
`=1

p(zi` | µi)︸ ︷︷ ︸
Multinomial

p(wi` | Φ{:,zi`})︸ ︷︷ ︸
Multinomial

)
︸ ︷︷ ︸

likelihood

(
K∏
k=1

p(Φ{:,k} | γ)︸ ︷︷ ︸
Dirichlet

I∏
i=1

p(µi | α)︸ ︷︷ ︸
Dirichlet︸ ︷︷ ︸

prior

)
.

=

(
K∏
k=1

1

BetaV (γ)

V∏
v=1

(
Φ{k,v}

)γv+nk
v−1

)

×

(
I∏
i=1

1

BetaK(α)

K∏
k=1

(
µik
)αk+mi

k−1

)
.

(24)

In our stochastic generative model we assume the following samplings,

� the variables in the matrix Φ’s are corpus level variables, which are assumed to be
sampled once for the corpus,

� the document level variables µi’s are sampled once for each document,

� the variables zi`’s are word level variables that are sampled once per word in each
document.

We note that the probability p(wi` | Φ{:,zi`}) simplifies to probability value Φ{
zi`,w

i
`

}, so the

likelihood

L(µ,Z,w | α,γ)
∆
= p(µ,Z,w | α,γ), (25)
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is itself a product of likelihood terms, as is seen by the the properties of Dirichlet distri-
butions (see D.1). Given the observed document collection W , the basic task of Bayesian
inference is to compute the posterior probability distribution over the model parameters
Φ and the latent variables, µ, and Z. The posterior is

p
(
µ,Z,Φ |W ,α,γ

)
=

p
(
µ,Z,WΦ | α,γ

)∫
Dom.(µ)

∫
Dom.(Φ)

{ ∑
Dom.(Z)

p
(
µ,Z,W | α,γ

)}
dµdΦ

. (26)

Although the LDA model is a relatively simple model, a direct computation of this pos-
terior is clearly infeasible due to the summation over topics in the integral of the de-
nominator. Further, training LDA on a large collection with millions of documents can
be challenging and efficient exact algorithms have not yet been found for such tasks, see
[Bun09]. Consequently we appeal to approximate-inference algorithms, in particular: the
mean field variational inference [BNJ03], the collapsed variational inference [TNW07], the
expectation propagation [ML02], and Gibbs sampling [GS04]. The article [BJ06] has given
a detailed discussion on some of these methods and suggested alternatives, such as; the
direct Gibbs sampling by [PSD00] and Rao-Blackwellised Gibbs sampling by [CR96]. Fur-
thermore, [WMM09] has studied several classes of structured priors for the LDA model, i.e.
asymmetric or symmetric Dirichlet priors on µ and Φ. They have shown that the LDA
model with an asymmetric prior on µ significantly outperforms that with a symmetric
prior. However, there are no benefits from assuming an asymmetric prior for Φ.

Out of all proposed approximate inference algorithms, each of which has advantages
and disadvantages, hereafter we focus on the collapsed Gibbs sampling algorithm intro-
duced in [GS04], details can be found in [SG07]. The collapsed Gibbs sampler is found to
be as good as others. It is also general enough to be a good base for extensions of LDA.

6.3 Numerical Implementation

Gibbs sampling [GG90] is a special case of the Metropolis-Hastings algorithm in the Markov
chain Monte Carlo (MCMC) family. The first collapsed Gibbs sampling algorithm for the
LDA model is proposed by [GS04] and is known as the Griffiths and Steyvers’ algorithm.
It marginalises out µ and Φ from Equation (26) using the standard normalising constant
for a Dirichlet. The strategy of marginalising out some hidden variables is usually referred
to as “collapsing” [Nea00], which is the same as Rao-Blackwellised Gibbs sampling [CR96].
The collapsed algorithm samples in a collapsed space, rather than sampling parameters
and hidden variables simultaneously [TNW07]. So, the Griffiths and Steyvers’ algorithm
is also known as a collapsed Gibbs sampler.

The principle of Gibbs sampling is to simulate the high-dimensional probability dis-
tribution by conditionally sampling a lower-dimensional subset of variables via a Markov
chain, given the values of all the others are fixed. Essentially this means reducing a large
joint probability distribution to a collection of univariate probability distributions. The
sampling proceeds until the chain becomes stable (i.e. after the so-called “burn-in” period,
the chain will burn-in to a stable local optimum). Theoretically, the probability distribu-
tion drawn from the chain after the “burn-in” period will asymptotically approach the true
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posterior distribution. In regard to the LDA model, the collapsed Gibbs sampler consid-
ers all word tokens in a document collection, and iterates over each token to estimate the
probability of assigning the current token to each topic, conditioned on topic assignments
of all other tokens.

To derive the conditional distributions of interest, we first need to compute the joint
distribution over Z and W , conditioned on the hyper-parameters α and γ. From equation
(24) we see that

p
(
Z,W | α,γ

)
=

∫
Dom.(Φ)

∫
Dom.(µ)

p(Z,W ,Φ,µ | α,γ)dΦdµ

∝
∫ ∫ K∏

k=1

p(Φ{:,k} | γ)
I∏
i=1

p(µi | α)
L∏
`=1

p(zi` | µi)p(wi` | Φ{:,zi`})dΦdµ

=

[∫ ( K∏
k=1

p(Φ{:,k} | γ)

I∏
i=i

L∏
`=1

p(wi` | Φ{:,zi`})

)
dΦ

]
×[∫ ( K∏

k=1

p(µ | α)

L∏
`=1

p(zi` | µi)

)
dµ

]
.

(27)

Remark 6.2. For brevity we have assumed all documents are of the same length in respect
of number of words, that is Li = L,∀i ∈ {1, 2, . . . , I}. This simplification does not effect
the end results for a corpus containing different document lengths.

To further evaluate the RHS of equation (33) we consider the last integral (immediately
above) against µ. Due to the assumptions of independence we note that

∫ I∏
i=1

p(µi | α)

L∏
`=1

p(zi` | µi)dµ =

∫
· · ·
∫
p(µ1 | α)p(µ2 | α) · · · p(µI | α)×

L∏
`=1

p(z1
` | µ1)

L∏
`=1

p(z2
` | µ2) · · ·

L∏
`=1

p(zI` | µI)dµ1dµ2 · · · dµI

=

I∏
i=1

∫
p(µi | α)

L∏
`=1

p(zi` | µi)dµi.

(28)

To evaluate the previous product of integrals we need only consider the ith integral. First
we recall the explicit form of the Dirichlet probability density, that is,∫

p(µi | α)︸ ︷︷ ︸
Dirichlet

L∏
`=1

p(zi` | µi)dµi =

∫ (
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

(µik)
αk−1

)
L∏
`=1

p(zi` | µi)dµi. (29)

The remaining probability density in (29) is a multinomial over the word-topic association
indicators zi`. Recall that z is integer valued and can take one of 1, 2, . . . ,K values, further
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several words in any given document may take the same z value and the counts/frequencies
of these allocations in document i are denoted by mi

k. Recalling the sum at equation (21),
we note that (ignoring normalization constants)

L∏
`=1

p(zi` | µi) ∝
K∏
k=1

(
µik
)mi

k . (30)

Consequently the integral at (29) may be written as,

∫
p(µi | α)

L∏
`=1

p(zi` | µi)dµi ∝
∫ (

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

(µik)
αk−1

)
K∏
j=1

(
µij
)mi

jdµi

=

∫ (
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

(µik)
mi

k+αk−1

)
dµi.

(31)

Its clear that the integrand in the last term above is somewhat close to a Dirichlet proba-
bility density, except its normalisation term does not match the parameters in its product
term. To complete this calculation and eliminate µi, we use the fact that the integration
over any probability density is unity, that is,

∫ (
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

(µik)
mi

k+αk−1

)
dµi =

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)∫ K∏
k=1

(µik)
mi

k+αk−1dµi,

=

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)

×

[( ∏K
k=1 Γ(mi

k + αk)

Γ
(∑K

k=1(mi
k + αk)

))(Γ
(∑K

k=1(mi
k + αk)

)∏K
k=1 Γ(mi

k + αk)

)
︸ ︷︷ ︸

=1

]

×
∫ K∏

k=1

(µik)
mi

k+αk−1dµi,

=

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)( ∏K
k=1 Γ(mi

k + αk)

Γ
(∑K

k=1(mi
k + αk)

))×
∫ (

Γ
(∑K

k=1(mi
k + αk)

)∏K
k=1 Γ(mi

k + αk)

)
K∏
k=1

(µik)
mi

k+αk−1dµi︸ ︷︷ ︸
=1

,

=

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)( ∏K
k=1 Γ(mi

k + αk)

Γ
(∑K

k=1(mi
k + αk)

)).
(32)

Similarly one can marginalise out Φ in equation (33) via calculations similar to those
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Algorithm 2 Major cycle of Gibbs sampling for LDA

1. initialise each zi` randomly to a topic in {1, ...,K}
2. for documents i = 1 to I do
3. for words ` = 1 to Li do
4. zi` ∼ p

(
zi` = k | Z \ zi`,W ,α,γ

)
5. end for
6. end for

above, the result being,

p(Z,W | α,γ) ∝
I∏
i=1

[(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)( ∏K
k=1 Γ(mi

k + αk)

Γ
(∑K

k=1(mi
k + αk)

))]︸ ︷︷ ︸
over documents

×
K∏
k=1

[(
Γ(
∑V

v=1 γv)∏V
v=1 Γ(γv)

)( ∏V
v=1 Γ(nkv + γv)

Γ
(∑V

v=1(nkv + γv)
))]︸ ︷︷ ︸

over topics

.

(33)

Equation (33) provides the required proportionality for the LDA collapsed Gibbs Sampler,
with both quantities µ and Φ marginalised out. The relation at (33) may be used to
compute a univariate sampling density for generating realisations of Z, that is, a sampling
density of the form

p
(
zi` = k | Z \ zi`,W ,α,γ

)
. (34)

Here we write a version of the set difference symbol to indicate all of Z except the element
zi`, that is

Z \ zi`
∆
=
{
z1

1 , z
1
2 , . . . z

1
L1 , z

2
1 , z

2
2 , . . . z

2
L2 · · · zI1 , zI2 , . . . zILI

}
\ zi`. (35)

Recall the main objective of the collapsed Gibbs sampler is to sample from the univariate
probability p

(
zi` = k | Z \ zi`,W ,α,γ

)
.

Continuing, we note the direct proportionality relationship

p
(
zi` = k | Z \ zi`,W ,α,γ

)
∝ p
(
Z,W | α,γ

)
. (36)

Further, due to statistical independence we need only consider terms affected by the states
zi` = k. This is simplified by the key property of the Gamma function, so Γ(n+α+1)/Γ(n+
α) = n+α. With a cancellation of factors the full conditional distribution can be derived
as

p(zi` = k|z1:I \ zi`,w1:I ,α,γ) ∝
nk
wi

`
+ γwi

`

V∑
v=1

(
nkv + γv

) mi
k + αk

K∑
`=1

(
mi
` + α`

) . (37)

The Gibbs algorithms for sampling the topic assignments Z is given in Algorithm 2. After
a sufficient number of Gibbs cycles, which means the sampler has burnt in, the Markov
chain is ready to sample. Given the posterior sample statistics, the latent variable µ and
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the model parameter Φ can be estimated at any one major cycle using the expectation of
the Dirichlet distribution (see §D) as:

Φ̂{k,v}
∆
=

nkv + γv
V∑
v=1

(
nkv + γv

) ∈ (0, 1], (38)

µ̂ik
∆
=

mi
k + αk

K∑
k=1

(
mi
k + αk

) ∈ (0, 1]. (39)

Standard MCMC methodology suggests these values should be averaged across a set of
major cycles after “burn in”. Then an estimation strategy might be:

1. “Burn in” for 400 cycles.

2. Continue major cycles, and at every 20-th major cycle,

(a) for k = 1, ...,K, compute the estimate Φ̂{:,k}

and for i = 1, ..., I, compute the estimate µ̂i,

(b) compute running averages using these two estimates.

6.4 MCMC-based LDA and the Uniqueness of Outputs

As detailed above, the basic outputs from the LDA implementation we described are
the estimated topic probabilities for each document, which we denoted by the vector µ̂i.
In the previous section we described how these quantities would be estimated using a
standard collapsed Gibbs sampling scheme. Given Gibbs sampling is a form of Markov
Chain Monte Carlo, this naturally means the outputs of our LDA are themselves inherently
random. This fact immediately raises natural questions, for example; how might I best,
if at all, interpret the statistics of the LDA outputs ? Does it make sense to compute
the estimated variance of these LDA outputs and somehow describe such a variance as a
measure of quality ? Ideally we would like such a variance to be small, as this might offer
some confidence to the analyst that he/she is near, (in some sense), to the true values.
Unfortunately, the answers to these important questions are not so simple.

The theory of this type of convergence analysis is, as yet, not exact or well defined.
Indeed, precise convergence bounds in this setting, when developed, require large numbers
of samples. As an example of the practice of so-called convergence diagnostics, see [CC96].
Note however, this technique is about assessing convergence of estimates; it has some
theoretical justification, but is based largely upon heuristics.

The origin of this problem in applying LDA to topic modelling is a basic one of rep-
resentation and modelling. Suppose we consider K possible topics. Then the LDA model
for this scenario has in fact K! = K ×K − 1 ×K − 2 × · · · × 1 equivalent models, all of
which are indistinguishable. To put this more simply, recall the matrix Φ. This matrix is
a vocabulary × topics matrix of probabilities. However there is no good reason to identify
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any particular topic with any particular column in this matrix. This means we can con-
sider all of the K! column-wise permutations of Φ as valid. Moreover, similar arguments
apply to the ordering of the components in the vectors µi.

Now, recalling our original concerns, suppose we run the MCMC form of LDA twice
on the same text data set and thereby generate two outputs, which will almost surely
not be the same. These outputs cannot be easily compared, as their outputs may have
arisen from the K! indistinguishable models. This issue is non trivial and remains an as
yet unsolved and important problem concerning the use of these LDA methods.

6.5 Visualisation for Topic Estimation

Ultimately all estimated probabilities are of the type µ̂(Tj | Di). Here Tj denotes topic
j and Dj denotes “document” j, which may well be a text “idea/response” rather than
an entire document need to be projected, by some means, onto a 2-dimensional space.
For example, if the topic number is 4, then for each Dj , our algorithm will compute an
estimated (and normalised) probability vector as follows,

µ̂i =
(
µ̂i1(T1 | Di), µ̂i2(T2 | Di), µ̂i3(T3 | Di), µ̂i4(T4 | Di)

)
∈ [0, 1] × [0, 1]× [0, 1] × [0, 1] ∈ R4.

(40)

Suppose we consider K ∈ N for a number of topics. To display the sites/locations of the
K topics and estimated probabilities shown in (40), we first arrange the K topic “centres”

as equidistant points on a circle, that is C ∆
=
{

(XT1 ,Y T1), . . . , (XTK ,Y TK )
}

denotes the
collection of “centres” appropriately chosen according to a given display. Note that these
points are not plotted on the screen, rather, they act as points of location for each topic.
Next the collection of all estimated probabilities µ̂(Tj | Di) are plotted relative to the
collection C. The plotting scheme used is a convex combination formulation, for example,
the 2-dimensional coordinates for the estimated probability concerning Di, are computed
by, (

XDi
,Y Di) ∆

=
K∑
j=1

µ̂ij(Tj | Di)×
(
XTj ,Y Tj

)
. (41)

Remark 6.3. It should be clear that the projection given by (41) is an approximation and
that information will be lost when projecting from K > 2 down to 2 dimensions onto a
visualisation screen. Moreover, this projection is naturally not unique. When projecting
from K > 2 downs to 2 dimensions, it is possible that distinct points in the probability
simplex, may be projected to the same

(
XDi

,Y Di)
coordinates. In contrast parallel co-

ordinate plots are unique.

7 Differential Analysis of Stake-Holder Text

In previous sections of this paper we restricted our attention to the task of topic modelling
based upon stochastic generative models and also considerable pre-processing of text, such
as the NLP routines described in §5.2 and . In differential analysis we are concerned with
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Figure 4: This figure shows a real-data example for 9 topics projected onto 2D. The
clusters of words at the topic centers list the top (probabilistically) 5 words associated to a
given topic. The details on these plots is given in section 6.5.

a slightly different problem. Suppose a collection of two stake-holder groups assemble in
the JDSC for an investigation concerning Chinook Helicopters and the use of their hoists.
Suppose the two stake-holder groups are ARMY and NAVY, both of which might make
use of these Helicopters. In a typical workshop a component discussion may occur on,
say, the best operational usage of a Chinook Hoist. Through networked text collection
software, participants might enter text offering subject matter expert opinions on such
a topic. With this basic example in mind, differential analysis (in the JDSC context)
concerns estimating, quantifying or illuminating the differences between two (or more)
stake-holder subgroup text responses on the same topic/question. Consequently we might
like to estimate basic notions such as bias, polarity or some measure of sentiment indicating
the “strength” of responses.

The notion of differential analysis of Text immediately raises certain preliminary ques-
tion, for example, what do we mean by difference ? Is it semantic difference, or some
measure of frequency difference ? Moreover, what exactly do we intend to compare ?
Is it sentences, noun phrases, paragraphs, or entire documents ? The literature has ad-
dressed many of these questions, see the following for some recent and interesting examples
[SDK11, CM05, LPW05, Pin04, TVV10, TP09, GST07].

7.1 Quantifying Sentiment

The approach we take in this work is to examine sentiment scores of the text responses
elicited through JDSC workshops. Sentiment scores are widely used in opinion mining, see
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for example the well known resource SentiWordNet at the URL http://sentiwordnet.

isti.cnr.it. The (several generations) history and details of SentiWordNet are discussed
in the articles [ES06] & [BES10]. See also [TL03]

The basic task here is to score words (numerically) as positive or negative. An ad-
ditional challenge is to infer (via sentiment) if text is subjective or objective. To score
sentiment one typically requires a lexicon. NICTA has developed its own proprietary sen-
timent score lexicon, which has been applied in this work. A numeric score for a given text
idea/response/entry is determined then converted to a colour with the obvious extrema
of; strong red for extremely/max negative sentiment and strong green for extremely/max
positive sentiment. We first consider this at a word level only (in the Key Phrase section
below we also apply sentiment scores to phrases). Recall that we denote a document Di

by the set,

Di ∆
=
{
wi1, w

i
2, . . . , w

i
Li

}
. (42)

Further, write ρ(·) : V → [−1, 1] for a sentiment function, which maps a given word in the
lexicon to a real number in the shown range. In our sentiment analysis we consider two
types of computation, the first is a sentiment score per document, the second involves a
user query, with sentiment then computed around all instances of the given query. In the
first case we compute the sentiment score of the document Sent.(Di) by a sum, that is,

Sent.(Di)
∆
=

Li∑
j=1

ρ(wij). (43)

The calculation shown at (43) is evaluated for all documents in the corpus
{
D1, D2, . . . , DI

}
.

Subsequently, each score is rescaled to [−1, 1] through the normalisation Sent.(Di)/M ,
where

M
∆
= max

i∈{1,2,...,I}

{
|Sent.(Di)|

}
. (44)

An example of this calculation is shown in Figure 4, here each dot on the simplex labels
a document and its colour indicates the computed sentiment.

If the user provides a single word query q ∈ V , then the sentiment calculation is
different. In this case document sentiment is only computed for documents containing q
one or more times. Suppose a document contains a given query three times, that is

Di =
{
wi1, q`1 , w

i
3, . . . , q`2 , . . . , q`3 , . . . , w

i
Li

}
(45)

Here the query word is located at the indices {`1, `2, `3}. To compute sentiment for this
document, with respect to this query, we take a type of windowed average around each
occurrence of the query. More generally we write 0 ≤ N i

q ≤ Li for the number of matches
found in Di against the query q. The sentiment score for this document is now computed
by,

Sent.
(
Di, q

) ∆
=

1

|S|
∑
j∈S

{
ρ(q) +

C∑
i=1

{
ρ(wij−1) + ρ(wij+1)

}}
. (46)

Here S is the set of indices locating the matches of q in the document and |S| is the
cardinality of this set. The window size is 2C + 1. All outcomes of the calculation shown
at (46) are normalised as above to the set [−1, 1]. The software developed in this project
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also has a capability for multi-word queries, for example “diesel submarine”, or “ARMY
Helicopter”. In this case the formulation of sentiment scoring is similar to that of (46),
however the score is computed around instances of the submitted word set. Further, if,
for example, a submitted word set is “diesel submarine”, these two words need not be
adjacent in a given document.

7.2 Visualisation for Sentiment Allocations

In this example for two stake-holder groups only, we consider data derived from the unclas-
sified data set collected by the JDSC in the activity described in §4. In Figure 5 we show a
single word-based score for the two groups, NICTA and DSTO. This example is included
only to illustrate the sentiment analysis for two groups. No substantial conclusions can be
drawn from this data set, it is used for illustration purposes only.

On the left and right of the plot are two vertical histograms for the top N words with
respect to a basic frequency count (per stake-holder group). These words are displayed
vertically from lowest to highest in frequency. The colours of these histograms indicate
the sentiment for how the (respective) groups used the words. Given there is no reason to
assume, (in the case of two stake-holder groups), that each will contribute the same volume
of text, frequency of usage is computed relative to a group’s contribution. For example,
suppose two groups are considered, Surface Navy and Submariners, further suppose the
Surface Navy contribute twice as much text (on a particular topic) as the Submariners
but both use the word torpedo in equal proportion. In this case the frequency of usage of
this word will be scored the same for both groups.

In the centre of Figure 5 we show an (x, y) graph depiction of all words corresponding
to the frequency histograms. Note that if the basic list of words contains 20 entries, then
there will be 40 corresponding (x, y) points shown on this plot, which indicate how the
same 20 words were used by both groups in respect of (jointly) frequency and sentiment.
All (x, y)-located words are tagged by colour to indicate which group they belong to. The y
component represents the sentiment value of a word ascending from lowest (most negative
or red) to highest (most positive or green). The x coordinate for a given word shows
the relative frequency. This axis (for 2 stake-holder scenarios) is really two frequency
domains shown side by side. Tagged words in the exact centre of the plate indicate equal
usage. To give an example of how frequencies are computed, we write fDSTO(wi`) and
fNICTA(wi`) to denote the frequency of usage of the word wi` by the stake-holder groups.
In the depiction of Figure 5 the stake-holder group of DSTO is shown on the left side
of the figure. Consequently, DSTO-coloured points to the left of the centre of this plot
indicated higher frequency of use by DSTO. These particular frequencies (x locations) are
computed by

x(wi`)
∆
=

fDSTO(wi`)

fDSTO(wi`) + fNICTA(wi`).
(47)

With x just defined the screen coordinates for a given (DSTO) word are computed as,

(x, y)
∆
=
(
x(wi`),Sent.(wi`)

)
. (48)

The corresponding points for NICTA are computed similarly.
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Figure 5: This figure shows a two stake-holder differential analysis at a word level only.
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8 Key-Phrase Identification

The common word “phrase” has a diverse variety of meanings. For example, in music
“phrase” has a clear meaning, it is a unit of music that, if extracted, has complete musical
sense on its own. In text analysis the notion of a phrase is somewhat similar in respect of
what it might convey, however, the classification of phrases in text is far more sophisticated
and developed. In text, phrases can be classed in a variety of types, for example: noun
phrases, adverbial phrases, adjectival phrases and prepositional phrases, to name just a
few. Consequently, we need to identify which class of phrases should be identified and
analysed in text data elicited in a defence capability.

In NLP the task of identifying/tagging phrases in text has received considerable atten-
tion and a variety of schemes are available to address such tasks. In this work we examine
the Multi-Word-Term methods described in [FAM98] and some more basic frequency and
sentiment based identification.

8.1 Definitions and Basic Theory

The key-phrase detector we consider here is due to K. Frantzi, S. Ananiadou and H. Mima,
see [FAM98]. This paper also cites the following directly related PhD Theses, [Fra98],
[Ana88] and [Lau96a]. Some further publications of relevance are: [KU96], [DPL94] and
[Dun93]. Unfortunately, a detailed exposition of the interesting results in [FAM98] is well
beyond the scope of this report, however, we give here a brief overview of its relevant
components. At the outset we note that our term “key-phrase” refers to a Multi Word
Term (MWT), typically two or three words in length. The task of identifying such “terms”,
is usually referred to as Automatic Term Recognition (ATR).

The method developed in [FAM98] is called (by the authors), the C-value/NC-value
method. Roughly, this method proposes the combination of two classes of text information
to perform ATR, these are; 1) linguistic information (the so-called C-value) and 2) statis-
tical information (the so-called NC-value). Processing the linguistic information requires
three components; parts-of-speech tagging, linguistic filters and a specific list of stop words
which are not expected to occur in MWTs. The basic notion of parts-of-speech tagging was
briefly described in §5.2. Each of these three components will have performance depen-
dent upon the type of text being examined and the specific algorithms being implemented
(there are numerous schemes for parts-of-speech tagging). An interesting aspect of the
C-value/NC-value method is it uses a type of hybrid linguistic filter. Before describing
this filter we recall the notion of regular expressions as they appear in Computer Science.

Definition 8.1 (Regular Expressions). In computer science, regular expressions are
a special type of logical statement specifically constructed for searching and matching pur-
poses, such as matching given strings or given characters etc. More detail on regular
expressions can be found in the well known text [SW11], or the URL http: // introcs.

cs. princeton. edu/ java/ 72regular/ . Various symbols are used in regular expressions.
A brief relevant list of these symbols is shown in Table 7.

The linguistic filter component of [FAM98] is a hybrid or combination of three types
of linguistic filters. These filters each search for matches against certain parts-of-speech
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Table 7: Some regular expression symbols

Symbol Meaning

∗ 0 or more
? {0, 1}
+ one or more occurrences
| logical OR

combinations or specific sequences of parts-of-speech, see, for example [Bou92], [DC95]
and [DGL94]. Using the abbreviation Adj. for an adjective and NounPrep for a noun
preposition, and the symbols in Table 7, these three linguistic filters are written:

1. Noun+Noun,

2.
(
Adj. | Noun

)+
Noun,

3.
((

Adj. | Noun
)+ | (( Adj. | Noun

)∗(
NounPrep

)
?
) (

Adj. | Noun
)∗)

Noun.

To explain this further by way of example, consider the second linguistic filter above.
Recall that the exponent of + means one or more occurrences and ( Adj. | Noun) is an
adjective or a noun. Consequently, a match on this filter would be a sequence of the type,
( Adj. | Noun), ( Adj. | Noun),. . . ,( Adj. | Noun), Noun.

Remark 8.1. The three listed filters above are meant to indicate a successive compounding
of complexity, where 2 is a more complex version of 1 and 3 is a more complex version of
2. Ultimately the filter at 3 is the form we wish to encode for out key-phrase estimation.

The second, or “statistical” part of the C-value/NC-value algorithm concerns a com-
pensated frequency estimator, which deals with possible complexities/ambiguities of sub-
strings. The interested reader is referred to [FAM98].

8.2 Visualisation For Key Phrases

An example of key phrase estimation for two subgroups is shown in Figure 6. In this
example we show ranking of the identified key-phases (or MWTs) and their sentiment is
shown by colour. The frequency of use calculations for this plot are identical to those
described in §7.2, however frequency is now computed by occurrences of key-phrases (or
MWTs).
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Figure 6: This figure shows a two stake-holder differential analysis indicating: an es-
timated collection of key-phrases, the frequency of usage of key phrases and sentiment
attached to the usage of these phrases
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9 Future Work

The project described in this report represents a first-effort (in the JDSC) to apply text
analysis to the task of analysing text-based opinions elicited through decision support
workshops. While the results reported here are in this sense preliminary, the outcomes of
this work have raised several extending questions.

9.1 Kullback-Leibler Inter-Topic Distances

In the current implementation of topic modelling algorithms described in this report all
topic centres are placed “equidistant” on a simplex of a given dimension. In some sense this
display is a 2D depiction of estimated probability distributions in a space of probability
distributions. Technically the distances between these topic centres (on the display) are a
type of Euclidean distance, but this is not relevant in a space of probability distributions.
Furthermore spacing topics as “equidistant” points on a simplex gives no indication of how
close these topic centres are to each other. In a space of probability distributions distance
is usually measured by schemes such as the Kulback-Leibler (KL) distance. As an example,
recall the idealised probability distributions in Table 6. The LDA scheme will estimate
these distributions and there is no good reason to assume they might be equidistant. A
potential future investigation on this subject might be to explore the development of a
proportional display where distributions are spaced according to a distance such as the
symmetric KL distance.

9.2 Differential Analyses for Text Subsets

The work in this Technical Report concerning the interesting topic of differential analyses
is in its infancy. Indeed the results shown here are at best preliminary. This is an exiting
and challenging area to further explore in a defence science context. The literature has a
diverse collection of measures for differential analyses that could be implemented, tested
and further developed for defence application. An additional challenge here, as in LDA,
is the task of visualisation. Clearly the 2D visualisation task is easy for two stake-holders.
However, this is a simple case and in JDSC decision support workshops there will be more
than two stake-holder groups.

9.3 Algorithm Property Analyses

The emphasis in this report is upon the development of sets of algorithms to perform
various tasks on a corpus of text data. While such outcomes hopefully provide value to
Defence analyses, they are by no means complete. What remains is to analyse these algo-
rithms for performance, either empirically or analytically. It would seem that computing
analytical results for performance of topic estimation is difficult, but not insurmountable.
However, there are numerous empirical tests that can be conceived to develop further
intuition for these algorithms and hopefully identify limits and ambiguities.
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9.4 Statistical Significance Filtering

The current software developed for this project displays every document (for example every
text response) in the corpus of text being examined. In particular, for a JDSC workshop,
this means each individuals response is allocated a set of probabilities estimating the
response’s relevance to a finite number of topics. In some cases this situation might
result in too much data and consequently the plots on the topic simplex are cluttered.
Ideally we would like a means of carefully filtering/classifying data, based on notions such
as the statistical significance as text response, for example, those responses within one
standard deviation of a mean etc. For example could one, (via properly defined statistics),
reduce the display on the topic simplex to all those text responses within a specified
probabilistic range? Alternatively, elicited text data may contain outliers which measured
as statistically insignificant, might contain relevant information. In this case one wishes
to display those elicited text responses that are, for example, 3 standard deviations from
the mean etc.

9.5 Topic Modelling Visualisation Schemes

The outputs of probabilistic topic modelling are shown, for example, in Figure 4. Is this the
best display ? Higher dimensional data can be depicted in a variety of ways, for example
see the excellent text [KC06]. One possible project for the work reported here might
be to explore alternative displays of topic estimation. In particular parallel coordinate
plots. These plots are especially suitable to our task as the range space of probabilities is
always the compact set [0, 1]. Arguably a defence analyst examining higher dimensional
data computed by LDA would benefit from having a variety of higher dimensional data
displays.

9.6 The Analysis of Historical Data

The JDSC has a relatively large repository of workshop text data elicited through net-
worked text collection software. Moreover, each of these workshop data sets have associ-
ated written reports. These reports (in most cases) include human analysis of the collected
text, the results of which appear in the reports in various forms. Such data will be ex-
amined retrospectively with LDA schemes (and the other forms of analysis described in
this report) and the results compared against the outcomes of human analysis. Further,
there are numerous corpora in Defence which could be similarly analysed, for example, the
sequence of Australian Defence White Papers, or the collections of so-called Issues Papers
on Force Structure Review.
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10 Conclusion

10.1 Overview

In this Technical Report we have described the evolution of research collaboration between
DSTO and NICTA, the aims of which were to develop an algorithmic text analysis capa-
bility. This work was motivated by a JDSC’s need to provide analysis on military SME
opinions elicited in text format. The JDSC’s modus operandi and means of text data col-
lection through networked software has also been described. In a rough way of speaking,
one can liken the JDSC workshop text as a type of incomplete book which must be read
and analysed, but has no contents page or index. LDA attempts to estimate “contents”
in the form of a topic map, and the estimated location (index) of topic-specific material
is given in terms of probabilities on a simplex. The second part of our text analysis work
concerned sentiment analysis and key phrase analysis. Examples were shown on an un-
classified data set collected in a real JDSC workshop.
The work described in this report is clearly in its infancy, however, it is hoped that this
contribution might be continued and extended to further develop this capability.

10.2 Summary of Contributions

The main contribution of this work was to bring to bear some modern algorithms of
text analysis on a real and ongoing problem in defence, viz., the analysis of SME expert
opinions concerning a given topic in defence capability. Probabilistic topic modelling via
LDA is now well understood and has been applied in a variety of settings. In our context
LDA offered a first exploratory means to estimate a topic map. LDA is one of many topic
estimation schemes and LDA itself can be implemented in different ways, for example,
Gibbs Sampling approximations or EM algorithms. The true value of LDA in our specific
settings is yet to be determined and will form a significant part of our future work. Our
main contributions from this work are:

1. the development of a single integrated software package for the text analysis tech-
niques described in this report,

2. the development and implementation of a differential analysis capability using sen-
timent scores,

3. the implementation of a multi-word term identifier which scores such “phrases” in
terms of sentiment,

4. the development of a diverse collection of schemes for the visualisation of text col-
lected from stake holder groups writing a common topic,

5. a computer-based capability for searching specific corpora of decision support defence
workshops.
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lingual and bilingual terminology, Proceedings of the 15th International Con-
ference on Computational Linguistics, 1994, pp. 515–521.

Dir39. J. P. G. L. Dirichlet, Sue une nouvelle méthod pour la détermination des
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Appendix A Conjugate Priors

A.1 Definitions

The notion of conjugate priors is an inherently Bayesian concept and was introduced
relatively recently in 1961 by Raiffa and Schlaifer. A more recent edition of this work
may be found in [RS00]. A key idea of conjugate priors is (loosely) based on the property
closure with respect to set membership.

Definition A.1 (Conjugate Prior). Suppose F is a family of probability distributions
with parameter space Θ. The family F is said to be conjugate for a likelihood function

`(x | θ) ∆
= p(x | θ), if for every π(·) ∈ F , then π(θ | x) ∈ F .

Recall that the normalised version of Bayes’ rule is usually written

π(θ | x) =
π(θ)f(x | θ)∫

Θ
π(ξ)f(x | ξ)dξ

. (A1)

The problem-child in equation (A1) is its denominator on the right hand side, which
usually requires some form numerical integration when the integrand is complex in form,
or multidimensional, or both. However, the integrand in this term is identical in form to
the numerator and so Bayes’ rule is more commonly written in its proportionality form,

π(θ | x) ∝ π(θ)f(x | θ). (A2)

The importance/value of conjugate priors is essentially based on computational issues.
If the collection F is parametrised, then using conjugate priors will mean that updat-
ing/switching from a prior to a posterior distribution is just a matter of updating a finite
set of parameters. Moreover, the possibility of numerical integrations may be avoided by
using conjugate priors.

A.2 Example

Remark A.1 (Example). The celebrated Kalman filter introduced by Rudolf Kalman
(see [Kal60]), offers a classic illustration of the computational value when using conjugate
priors. Loosely speaking, the discrete-time Kalman filter estimates a Gaussian distribution
(or a function) at each discrete point in time. Fortunately, a Gaussian distribution is fully
described by its two sufficient statistics, that is, a mean and a covariance/variance. If a
Gaussian prior is used, as was the case in Kalman’s original work, then the posterior
distribution is also Gaussian, since Gaussians are closed under multiplication. Therefore
Kalman’s algorithm need only update the sufficient statistics just mentioned. As an aside,
the stochastic models studied by Kalman can quickly become computationally complex if
non-Gaussian priors are used. Kalman-like estimation schemes for non-Gaussian initial
conditions have been studied in [Ben04] and [Mak86].
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Table A1: Posterior distribution parameter updates for a Beta prior and binomial likeli-
hood.

Statistic prior to observing x posterior to observing x

mean
a

a+ b

a+ x

a+ b+ n

variance
ab

(a+ b)2(a+ b+ 1)

(a+ x)(b+ n− x)

(a+ b+ n)2(a+ b+ n+ 1)

Remark A.2 (Example). To give an explicit example of Bayesian estimation with con-
jugate priors, we consider an experiment whose outcomes are distributed according to a
binomial probability distribution. Suppose X ∼ Bin(n, θ) where n is known and θ ∈ Θ
is an unknown parameter. We suppose that θ is in the interval (0, 1) and is distributed
according to a Beta distribution (see Appendix C), so that

π(θ) =
θa−1(1− θ)b−1

B(a, b)
. (A3)

Consequently the form of π(θ | x) in the above example is again a Beta distribution with
parameter updates/recursions listed in Table A1

Remark A.3. One well known example of a probability density that does not have a
conjugate prior is the uniform probability density.

The interested reader can find far more detail on conjugate priors in the well known classic
works: [Rob01, RS00, DeG04, BS94].
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Appendix B Multinomial Probability

Distributions

B.1 Background

In this Appendix we recall some basic elements of multinomial distributions. Technical
details on these distributions may be found in [Wil62] and [RS01].
In most introductory courses on probability theory one inevitably meets the binomial dis-
tribution, which is a probability distribution for a finite sequence of independent experi-
ments, each of which has a two-state outcome, for example {0, 1}, {H,T}, or {Success,Fail}
etc. The very next extension to this situation is a trinomial distribution, modelling ex-
periments with three possible outcomes. Further, multinomial distributions model a more
general version of the situations just described where each elementary experiments results
in one and one only of r > 2 possible outcomes. In particular, the multinomial distribution
describes the probabilities of compound events, each consisting of N basic experiments,
(elementary events), each of which has r possible outcomes.

For brevity we denote the set of elementary event outcomes by S ∆
= {1, 2, . . . , r}, that

is, we consider an integer-valued random variable X with the mapping

X : Ω→ S. (B1)

Consider a compound experiment consisting of N independent repetitions of the the RV
X. A specific realisation or outcome of this compound experiment is labelled as

ω =
{
i1, i2, . . . , iN

}
. (B2)

Here i` ∈ S, for ` ∈ {1, 2, . . . , N} Note that collection at (B2) is an ordered N -tuple. the
probabilities assigned to each ω are

p(ω) = p
(
ω | X1(ω) = i1, X2(ω) = i2, . . . , XN (ω) = iN

)
,

= pi1 × pi2 × · · · × piN .
(B3)

What we would like to do is write down the probability distribution for any given event
ω ∈ Ω. This task is straightforward needing only some simple formulae from combinatorics.

B.2 Derivation

Definition B.1 (Count Frequencies). Suppose
{
n1, n2, . . . , nr

}
natural numbers whose

values indicate the number of specific elementary events occurring in a compound event
consisting of N trials. Clearly, the n` are linearly dependent, so

N =
r∑
`=1

n`. (B4)

The numbers n` are not to be confused with the values X might take from the set S, rather,
the numbers n` are counts for the occurrence of the X(ω) = ` in N trials.
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Using these count frequencies we can write down the probability for a compound event
having n1 occurrences of the outcome 1, n2 occurrences of the outcome 2, and similarly up
to nr occurrences of the outcome r. Due to independence this quantity is pn1

1 ×p
n2
2 ×· · · pnr

r .
However, numerous outcomes have exactly this probability. For example, suppose we
consider a trivial case of r = 2 and N = 3, then the collection of all possible outcomes is
{1, 1, 2}, {1, 2, 1} and {2, 1, 1}, each having the identical probability p2

1×p1
2. We recall the

following result from combinatorics,

Lemma B.1. The number of unordered samples of size r from a population of size N is,

C(N, r)
∆
=

(
N

r

)
=
N(N − 1)(N − 2) · · · (N − r + 1)

r!
. (B5)

Further, for 1 ≤ k ≤ r we write Zk(ω) for a random variable whose integer value indicates
the number of times k ∈ {1, 2, . . . , r} appeared in N independent repetitions of our basic
experiment. Clearly, ∀ω ∈ Ω

r∑
`=1

Z`(ω) = N. (B6)

Now we can write down the probability for our compound event of N trials which is,

P
(
Z1(ω) = n1, . . . , Zr(ω) = nr

)
= C(N,n1)C(N,n2) · · ·C(N,nr)× pn1

1 × · · · × p
nr
r

=

(
N

n1

)(
N − n1

n2

)(
N − n1 − n2 − · · ·nr−1

nr

)
× pn1

1 × · · · × p
nr
r .

(B7)

Consequently multinomial probability density for the joint events {Z1, Z2, . . . , Zr} has the
form,

p(Z1 = n1, . . . , Zr = nr) =
N !

n1!n2! · · ·nr!
pn1

1 × · · · × p
nr
r

=

(
N !∏r
`=1 n`!

)
r∏
j=1

p
nj

j .
(B8)

The Moment generating function for a Multinomial distribution has the form,

MGF(t1, t2, . . . , tr) =
(
p1 exp(t1) + p2 exp(t2) + · · ·+ pr exp(tr)

)N
. (B9)

Here t1, t2, . . . , tr ∈ R.

Remark B.1. For the simple case r = 2 the density at (B8) reduces to the binomial
probability density. This is easily seen from the MGF by noting that

MGF(t1, 0, 0, . . . , 0) =
(
p1 exp(t1) + p2 + · · ·+ pr

)N
=
(

1− p1 + p1 exp(t1)
)N

,

(B10)

which is the MGF for a binomial distribution and Moment generating functions are unique.
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B.3 Some Statistics

The following basic statistics are of use, E[ni] = Npi, Var[ni] = Npi(1− pi) and
Cov[ni, nj ] = −Npipj , i 6= j. More technical details on multinomial distributions can
be found in [Wil62, RS01]. The multinomial distribution has also been studied through
change of probability-measure techniques. The interested reader is referred to the excellent
monograph [AE04].
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Appendix C The Beta Distribution

C.1 Basic Properties

The Beta probability distribution belongs to a family of distributions whose forms usually
involves Gamma functions. Recall, that the Gamma function may be written

Γ(x) =

∫ ∞
0

tx−1 exp(−t)dt. (C1)

Here we take x ∈ R+. More details on this function and complex valued arguments can
be found in [AS70, GR00]. Some useful formulae for this function are;

Γ(x) = (x− 1)!, x ∈ N (C2)

Γ(x) = (x− 1)Γ(x− 1), x ∈ R+, (C3)

Γ(1/2) =
√
π, (C4)

Γ(2x) =
22x−1

√
π

Γ(x)Γ(x+ 1
2). (C5)

Given the connection of the Beta distribution to the Dirichlet distribution and its corre-
spondence to the Dirichlet, (a Dirichlet distribution for dimension 2 collapses to a Beta
distribution), we recall some basic properties of the Beta distribution here.
The term Beta distribution refers to a family of probability distributions defined on the
set (0, 1) indexed by two scalar-valued parameters, α and β.

Definition C.1 (Beta). The probability density for the Beta distribution has the form,

f(x | Θ) =
1

B(α, β)
xα−1

(
1− x

)β−1
. (C6)

Here Θ = {α, β} and the bounds on variables are 0 < x < 1, α > 0 and β > 0 and B(α, β)
denotes the so-called Beta function,

B(α, β) =

∫
0,1
ξα−1

(
1− ξ

)β−1
dξ. (C7)

The Beta function above is directly related to the Gamma function through the fol-
lowing identity,

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(C8)

Conveniently all moments of the Beta distribution can be calculated without evaluating
the integrals in either (C6) or (C7). With n > −α we see that

E
[
Xn
]

=
1

B(α, β)

∫ 1

0
ξnξα−1

(
1− ξ

)β−1
dξ

=
1

B(α, β)

∫ 1

0
ξ

(
α+n
)
−1(1− ξ)β−1dξ

=
B(α+ n, β)

B(α, β)

=
Γ(α+ n)Γ(α+ β)

Γ(α+ β + n)Γ(α)
.

(C9)
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Consequently the mean and variance for a Beta distributed random variable are, respec-
tively,

E[X] =
α

α+ β
, (C10)

E
[(
X − E[X]

)2]
=

αβ

(α+ β)2(α+ β + 1)
. (C11)

Remark C.1. The Beta distribution provides a significant modelling flexibility for scalar-
valued random variables defined on the unit interval, that is, by varying the values of α and
β one can generate a large variety of shape features in Beta distributions. For example,
if (α > 1, β = 1) then the family of curves is strictly increasing, or strictly decreasing
if (α = 1, β > 1). If α = β symmetric densities are produced. If α = β = 1 the Beta
distribution degenerates to a uniform probability distribution.

Remark C.2. Beta distribution is a conjugate prior for a binomial distribution.

C.2 Checking that
∫
f(ξ)dξ = 1

Finally, it is an interesting exercise to show that the probability density given at (C6) is
in fact a valid probability distribution. The parameter ranges given in Definition (C.1)
ensure the integral is well defined. However, what remains is to show the that the Beta
probability density integrates to unity.
Recall the (real valued) Gamma function defined at (C1). We first consider a product of
these functions,

Γ(a)Γ(b) =

∫ ∞
0

ξ(a−1) exp(−ξ)dξ
∫ ∞

0
λ(b−1) exp(−λ)dλ

=

∫ ∞
0

∫ ∞
0

ξ(a−1) exp(−ξ)λ(b−1) exp(−λ)dξdλ.

(C12)

Here a, b ∈ R+. This double integral may be solved through change of variable techniques,
the first being

ξ
∆
= r2 cos2(θ), (C13)

λ
∆
= r2 sin2(θ). (C14)

The Jacobian for this transformation is

J
∆
= |∂(ξ, λ)

∂(r, θ)
| = 4r3 sin(θ) cos(θ). (C15)

Applying this transformation we get,

Γ(a)Γ(b) = 4

∫ π/2

0

∫ ∞
0

(
cos(θ)

)(2a−1)(
cos(θ)

)(2b−1)
r(2a+2b−1) exp(−r2)drdθ. (C16)
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Now consider the radial component of this double integral and make the substitution

r = ξ
1
2 . Then

I = 2

∫ ∞
0

r2a+2b−1 exp(−r2)dr,

= 2

∫ ∞
0

ξa+b− 1
2 exp(−ξ)1

2ξ
−1

2dξ,

=

∫ ∞
0

ξ(a+b−1) exp(−ξ)dξ,

= Γ(a+ b).

(C17)

Consequently
Γ(a)Γ(b)

Γ(a+ b)
= 2

∫ π/2

0
cos(θ)(2a−1) sin(θ)(2b−1)dθ. (C18)

To compute this integral we make the substitution cos(θ) =
√
ξ. Then

cos(θ)(2a−1) = ξa−
1
2 (C19)

sin(θ)(2a−1) = (1− ξ)b−
1
2 . (C20)

Using these substitutions we see that

2

∫ π/2

0
cos(θ)(2a−1) sin(θ)(2b−1)dθ = −2

∫ 1

0
ξ(a− 1

2)(1− ξ)b− 1
2
dθ

dξ
dξ,

= −2

∫ 1

0
ξ(a− 1

2)(1− ξ)b− 1
2 − 1

2ξ
−1

2 (1− ξ)−
1
2dξ

=

∫ 1

0
ξ(a−1)

(
1− ξ

)(b−1)
dξ

=
Γ(a)Γ(b)

Γ(a+ b)
.

(C21)

�
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Appendix D The Dirichlet Probability

Distribution

At first meeting, the Dirichlet distribution will seem surprising for two reasons

1. [Form] Most univariate probability distributions may be written in a general form
f(x; Θ), where x is the independent variable and Θ denotes a set of one or more
parameters. However, the Dirichlet distribution is different to such form in that
its independent variable is itself a discrete probability distribution and so written
(roughly) as f

(
{p1, p2, . . . , pK}; Θ

)
. Consequently the Dirichlet distribution is a

distribution over finite probability distributions.

2. [Visualisation] The second difficulty one encounters with the Dirichlet distribution
is that it’s not easily visualised, especially for higher dimensions. In the case of a
univariate Gaussian distribution (for example), one immediately sees from inspection
a measure of central tendency (mean) and a dispersion about a mean (variance).
Other basic shape features one might look for in a simple probability distribution are
skew, kurtosis and mode etc. However, none of these shape features are easily seen
with a Dirichlet distribution. At the outset, the domain for a Dirichlet distribution is
a standard simplex (defined below), consequently plotting and visualising Dirichlet
distributions will not be routine.

The Dirichlet distribution is named after the famous German mathematician Johann Peter
Gustav Lejuene Dirichlet14 [1805-1859]. Dirichlet’s seminal paper on this topic (concerning
mostly Dirichlet Integrals) appeared in 1839, see [Dir39]. A comprehensive survey of
this history of the Dirichlet distribution, the Dirichlet integral and the related Liouville
distribution can be found in [GR01]. Surprisingly this distribution is not well known,
indeed many modern books on probability theory make no mention of it at all, with one
notable example being Mathematical Statistics by S. S. Wilks ([Wil62]). However, the
Dirichlet distribution has been widely applied in a diversity of settings such as: statistical
genetics, belief functions, order statistics (see §8.7 in [Wil62]) and reliability theory, to
name a few. Further detail on this distribution and its applications can be found in
[Fer73, Ant74, Set94, FKG10, BS94].

The Dirichlet distributions arises quite naturally in LDA text analysis as LDA casts
topic modelling and estimation as a Bayesian inference problem. Consequently, basic
parameters such as the probability distribution of words in a topic and the probability
distribution of topics within a document, are not interpreted as fixed an unknown, rather,
as random variables, each with their own right with probability distributions. Conse-
quently the Dirichlet distribution offers a convenient means to write down these problems
with an added bonus that the Dirichlet is a conjugate prior with the multinomial distribu-
tion. This makes an already complex problem tractable. As an aside to this, some authors
have studied variants on the Dirichlet distributions in modelling of “bursts of words” in
text, see [MKE05].

14One indication of the reputation and contributions of Dirichlet is that he was chosen to be C. F. Gauss’
successor at the University of Göttingen.
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Definition D.1 (The Standard Simplex). There exists a variety of simplices, for our
purposes the so-called standard simplex is sufficient. We denotes a K dimensional standard
simplex as SK , where

SK
∆
=
{

(p1, p2, . . . , pk) | pi ∈ [0, 1]∀ i = 1, 2, . . . ,K, and

K∑
i=1

pi = 1
}
⊂ RK . (D1)

In some literature the simplex SK is referred to as the “probability simplex”.

Definition D.2 (Dirichlet Distribution). Consider a finite probability distribution p,
where

p
∆
= {p1, p2, . . . , pK} (D2)

The probability distribution p is said to have a Dirichlet distribution, if

p ∼ DirK
(
p, {α1, α2, . . . , αK}

)
=

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)
K∏
k=1

pαk−11{p∈SK}. (D3)

Here the parameter α
∆
= {α1, α2, . . . , αK} is such that

αk ∈ R+ ∀ k = 1, 2, . . . ,K (D4)

Remark D.1. Note that the most basic and expected parameters of mean and variance
do not appear explicitly in the function given at equation D3. These parameters are com-
puted/derived from the alpha values. Further, it is convention to use the word “concentra-
tion”, rather than variance for Dirichlet probability distributions.

Remark D.2. If K = 2, then then the distribution at (D3) degenerates to the Beta
distribution. In this sense the Dirichlet may be thought of as a K > 2 generalization of
the Beta distribution.

Remark D.3. If all components of α are set identically to unity, the Dirichlet becomes
uniform in the sense that every candidate p is equally likely to occur.

Remark D.4. It is an interesting and non-trivial exercise to show that the Dirichlet
distribution integrates to unity on the standard simplex. Details of this calculation can be
found in [Wil62].

D.1 Basic Statistics For A Dirichlet Distribution

Given that the Dirichlet distribution’s independent variable is multivariate, its statistics
may be given component wise. These statistics may be computed from the characteristic
function (see Wilks [Wil62]) or directly using properties of Gamma functions. We show one
such calculation here for the means of a Dirichlet distribution. It is sufficient to consider
one component of the mean as is shown below.

E[pi] =

∫
SK

piDirK(p,α)dp

=

∫
SK

piDirK(p,α)dp1dp2 . . . dpK

=

∫
SK

pi
Γ(α0)

Γ(α1)Γ(α2) · · ·Γ(αK)

K∏
k=1

pαk−1
k dp

(D5)

56 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2797

Here we write α0
∆
=
∑K

k=1 αk. Without loss of generality we may take pi = p1, so that

E[p1] =

∫
SK

Γ(α0)

Γ(α1)Γ(α2) · · ·Γ(αK)
pα1

1

K∏
k=2

pαk−1
k dp (D6)

Recalling the properties of Gamma functions for αi ∈ R+, we make the following assign-
ments

β1
∆
= α1 + 1 (D7)

βi
∆
= αi, ∀ i = 2, 2, . . . ,K. (D8)

Consequently

E[p1] =

∫
SK

α1

α0

Γ(β0)

Γ(β1)Γ(β2) · · ·Γ(βK)
pβ1−1

1

K∏
k=2

pβk−1
k dp

=
α1

α0

∫
SK

DirK(p,β)dp

=
α1

α0
.

(D9)

Similar calculations may be used to compute other useful statistics which we list in the
table below.

Table D1: Some basic statistics for a Dirichlet distribution

E[pi]
αi
α0

E[p]
(α2

α0
,
α2

α0
, · · · αK

α0

)
Var(pi)

αi(α0 − αi)
α2

0(1 + α0)

Cov(pi, pj), i 6= j
αiαj

α2
0(α0 + 1)

Mode(p)

(
α1 − 1

α0 −K
,
α2 − 1

α0 −K
, . . . ,

αK − 1

α0 −K

)

D.2 Conjugacy with a Multinomial Distribution

The following definition is standard in Bayesian statistics,

Definition D.3 (Exponential Families). Suppose µ(·) is a σ-finite measure defined on
X and that Θ denotes a parameter space. Suppose that the functions C(·) and f(·) are,
respectively from X and Θ to R+. Further, the functions T (·) and R(·) map from Θ and
X to RK . The family of probability distributions with respect to the measure µ(·)

f(x | θ) = C(θ)f(x) exp
(〈
R(θ), T (x)

〉)
(D10)

are called an exponential family of dimension K.
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For more details on exponential families see [Rob01].
The Dirichlet distribution may be written as follows,

DirK(p,α) = C(α)f(p) exp
( K∑
k=1

αk ln(pk)
)
. (D11)

Here the operator T (·), as it appears in equation (D10), is explicitly

T (p)
∆
=
(
ln(p1), ln(p2), . . . , ln(pK)

)
. (D12)

Consequently Dirichlet distributions constitute an exponential family for the operator T (·),
as defined by equation (D12) and so have a conjugate prior due to the Pittman-Koopman
Lemma (see [Rob01]).

Lemma D.1. Suppose the probability distribution p = {p1, p2, . . . , pK} is a random prior
in a Bayesian estimation task and is assumed to be distributed according to a Dirich-
let distribution with parameter α = {α1, α2, . . . , αK}. Further, suppose the set of integers
{m1,m2 . . . ,mK} is distributed according to a multinomial distribution with the same prob-
abilities p as above and is the assumed likelihood for this Bayesian estimation task. The
unnormalised posterior distribution, formed through the product of these two distributions,
is an unnormalised Dirichlet distribution.

Proof of Lemma D.1

π
(
p | {m1,m2, . . . ,mK}

)
∝ `
(
{m1,m2, . . . ,mK} | p

)
π(p)

=
N !

m1!m2! · · ·mK !

K∏
k=1

pmk
k

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)
K∏
k=1

pαk−1
k

=
N !

m1!m2! · · ·mK !

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)
K∏
k=1

p
(αk+mk)−1
k

∝ DirK
(
p, {α1 +m1, α2 +m2, . . . , αK +mK}

)
�.

(D13)

D.3 Generating Dirichlet Random Variables

There are several schemes by which one might generate samples from a Dirichlet distri-
bution and indeed several physical models which give rise to a Dirichlet distribution, for
example, the Polya Urn scheme and the so-called unity-length “stick breaking” scheme,
see [FKG10]. Perhaps the most popular and convenient scheme to generate samples from
a Dirichlet distribution is via the simulation of independently distributed Gamma random
variables, each having a common scale parameter.

Definition D.4 (The Gamma Distribution). Gamma random variables are continu-
ously distributed and take values in the position half of the real line R+, according to the
probability density function

Γ(x | k, θ) =
1

θkΓ(θ)
xk−1 exp(−x/θ). (D14)
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Here k and θ are, respectively, the so-called scale and shape parameters. These parameters
take values in the positive half of the real line.

The computer simulation of gamma random variables is discussed in the articles [AD74,
AP76].

Lemma D.2. Suppose α = {α1, α2, . . . , αK} is a given parameter for the Dirichlet dis-
tribution. Further, suppose that for i = 1, 2, . . . ,K, γi ∼ Γ(αi, 1).
Write

p̃ =
{
p̃1, p̃2, . . . , p̃K

} ∆
=

(
γ1∑K
j=1 γj

,
γ2∑K
j=1 γj

, · · · γK∑K
j=1 γj

)
. (D15)

Then

p̃ ∼ DirK(α). (D16)

Proof of Lemma D.2.
We suppose that the random variables γ1, γ2, . . . , γK+1 are independently sampled from
Gamma distributions with scale parameters (respectively) α1, α2, . . . , αK+1. Here each
distribution also has a common shape parameter k = 1. The joint probability density for
this collection of independent Gamma variables is,

ϕ(γ1, γ2, . . . , γK+1) =

K+1∏
j=1

1

Γ(αj)
γ
αj−1
j exp(−γj). (D17)

Recall that 0 < γj <∞.
New random variables u1, u2, . . . , uK , uK+1 are now defined by

ui
∆
=

γi
γ1 + γ2 + · · · γK+1

, i ∈ {1, 2, . . . ,K} (D18)

uK+1
∆
= γ1 + γ2 + · · · γK+1. (D19)

What we would like to do is compute the joint probability density for the random variables
u1, . . . , uK , uK+1, noting that uK+1 is a Gamma random variable with shape parameter∑K+1

`=1 α`. This calculation may be carried out by using the Jacobian of transformation
and the following inverse functions:

γ1 = u1uK+1, (D20)

γ1 = u2uK+1, (D21)

...
...

γK+1 = uK+1(1− u1 − u2 − · · · − uK). (D22)
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The corresponding Jacobian has the form,

J(u1, u2, . . . , uK+1, γ1, γ2, . . . γK+1) =

∣∣∣∣∣∣∣∣∣∣∣

uK+1 0 · · · 0 u1

0 uK+1 · · · 0 u2
...

...
...

...
...

0 0 · · · uK+1 uK
−uK+1 −uK+1 · · · −uK+1 (1− u1 − u2 − · · · − uK)

∣∣∣∣∣∣∣∣∣∣∣
=
(
uK+1

)K
. (D23)

Writing f(·) for the joint probability density function of u1, u2, . . . , uK , uK+1, we see that

f
(
u1, u2, . . . uK , uK+1

)
= ϕ

(
u1uK+1, . . . uKuK+1, uK+1(1− u1 − u2 − · · · − uK)

)
|J |

=

(
K∏
j=1

1

Γ(αj)

(
ujuK+1

)αj−1
exp(−ujuK+1)

)
×

1

Γ(αK+1)

(
uK+1

(
1− u1 − u2 − · · · − uK

))αK+1−1
×

exp
(
−uK+1(1− u1 − · · · − uK)

)
|J |

=
( K∏
j=1

1

Γ(αj)
u
αj−1
j

) 1

Γ(αK+1)
u

(∑K
`=1 α`

)
K+1 u−KK+1|J | exp

(
−uK+1

)
×

(
uK+1(1− u1 − u2 − · · · − uK)

)αK+1−1

=
( K∏
j=1

1

Γ(αj)
u
αj−1
j

) 1

Γ(αK+1)
×

(
1− u1 − u2 − · · · − uK

)αK+1−1
u

(∑K+1
`=1 α`−1

)
K+1 exp

(
−uK+1

)
.

(D24)

To complete our calculations we marginalise out the (independent) Gamma random vari-
able uK+1, that is.

g(u1, u2, . . . uK)
∆
=

∫ ∞
0

f(u1, u2, . . . uK , ξ)dξ

=
( K∏
j=1

1

Γ(αj)
u
αj−1
j

) 1

Γ(αK+1)

(
1− u1 − u2 − · · · − uK

)αK+1−1×

Γ(
∑K+1

`=1 α`)

∫ ∞
0

1

Γ(
∑K+1

`=1 α`)
ξ

(∑K+1
`=1 α`−1

)
exp(−ξ)dξ.

(D25)

The last integral directly above is a Gamma probability density integrated over its entire
domain and so is unity. Consequently

g(u1, u2, . . . uK) =

Γ(α1 + α2 + · · ·+ αK+1)

Γ(α1) · · ·Γ(αK+1)
uα1−1

1 · · ·uαK−1
K

(
1− u1 − u2 − · · · − uK

)αk+1−1
�. (D26)
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Remark D.5. The above technique to simulate Dirichlet random variables via the sam-
pling of a Gamma distribution is commonly used. Moreover, since this is an exact simula-
tion technique, (ie equality in distribution), this result can be used to establish some inter-
esting properties of Dirichlet random variables, such as the aggregation property established
in the next section. There are indeed alternative techniques to simulate Dirichlet random
variables, for example, five different simulation techniques are presented in [Nar90]. The
simulation is Dirichlet random variables is also discussed in [HC70],[Dev86] and [Ken09].

D.4 Aggregation Property

The so-called aggregation property of the Dirichlet distribution is particularly important
in Latent Dirichlet Allocation when applied to topic modelling in text analysis. Perhaps
the most popular approach to derive this property, is to make use make use of an additive
property for Gamma random variables with common scale-parameters values. This prop-
erty and the generation of Dirichlet random variables via Gamma random variables, may
be combined to establish the aggregation property of Dirichlet random variables.

Suppose X, Y are Gamma random variables with scale parameters θX and θY . Further,
suppose the shape parameters of these random variables are kX and kY . If kX = kY , then
the following equality holds (in distribution),

Gam
(
(θX + θY ), k

)
=d Gam

(
θX , k

)
+ Gam

(
θY , k

)
. (D27)

A simulation example of this property is shown in Figure D1. In this example Z ∼
Gam(5, 2.5), X ∼ Gam(1.7, 2.5) and Y ∼ Gam(3.3, 2.5). The resulting estimated statistics
were: E[Z] = 12.5262, E

[
(Z−E[Z])2

]
= 31.2424, E[X+Y ] = 12.4906 and E

[(
(X+Y )−

E[X + Y ]
)2]

= 31.2135. The histograms in Figure D1 were generated from i.i.d. sets of
10,000 samples each. Suppose that ϕi ∼ Gam

(
αi, 1

)
, where αi > 0 for i ∈ {1, 2, . . . ,K}.

Write

ϕ
∆
=
(
ϕ1, ϕ2, . . . , ϕK

)
, (D28)

1
∆
= (1, 1, . . . , 1) ∈ RK . (D29)

It was shown above in §D.3 that

p
∆
=

(
ϕ1〈
ϕ,1

〉 , ϕ2〈
ϕ,1

〉 , . . . , ϕK〈
ϕ,1

〉) ∼ DirK(p,α). (D30)

Suppose the index set {1, 2, . . . ,K} is decomposed into a union of mutually disjoint sets
as follows, {

1, 2, . . . ,K
}

= I1 ∪ I2 · · · IM, Ii ∩ Ij = ∅, ∀ i 6= j. (D31)

We now consider aggregated “states” formed through various additions of the probabilities
pi, for example,

p̃j
∆
=
∑
i∈ Ij

pi. (D32)
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Figure D1: Simulated example of the shape-parameter additive property for gamma dis-
tributed random variables.
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(a) Z̃
∆
= X + Y , where the two independent ran-

dom variables X and X are distributed as X ∼
Gamma(1.7, 2.5) and Y ∼ Gamma(3.3, 2.5).
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(b) Z ∼ Gamma(5, 2.5).

Then

{
p̃2, p̃2, . . . p̃M

}
=

(∑
i∈ I1

pi,
∑
i∈ I2

pi, . . . ,
∑
i∈ IM

pi

)

=d

(∑
i∈ I1 ϕi〈
ϕ,1

〉 ,

∑
i∈ I2 ϕi〈
ϕ,1

〉 , . . .

∑
i∈ IM ϕi〈
ϕ,1

〉 )
=d DirM ({p̃1, p̃1, . . . , p̃M}, ).

(D33)
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Appendix E Gibbs Sampling

E.1 Background

Gibbs Sampling is a very well known numerical method in statistics based upon Markov
Chain Monte Carlo (MCMC) methods. In particular, this method provides (in some cases)
a means to sample joint probability distributions of N dimensions by instead sampling
N univariate single-dimensional marginal distributions. There are many excellent books
covering MCMC schemes which have in recent years become enormously popular in areas
such as filtering and quantitative finance. The interested reader is referred to [Gam97]
for an introductory level treatment. More technical details on Gibbs sampling may be
found in [Asm10], [GRS96] and [RC05]. The statistical literature also contains numerous
expository articles on Gibbs Sampling schemes and theory, for example [CLR01, CG92,
CG95, SG92, GS90, BGHM95, Gey92].
The seminal ideas of Gibbs sampling were introduced in the article [GG84]. However an
equally important article written by Gelfand and Smith demonstrated a much broader
class of problems that could be solved through Gibbs Sampling, see [GS90]

The theory of this scheme is based primarily upon asymptotic properties Markov
chains, consequently Gibbs sampling is sometimes referred to as Markov Chain Monte
Carlo (MCMC). The relevant Markov chain theory in support of Gibbs sampling is dis-
cussed in [Nor98] and [H0̈4].

E.2 Basic Markov Chain Monte Carlo (MCMC)

Monte Carlo estimation in general concerns some form of approximation achieved through
simulation. In MCMC, the simulation device used for the approximation is one or more
Markov chains. These chains are of course not arbitrary and must have certain properties
for Gibbs Sampling (and indeed other schemes) to achieve the desired results. Three
fundamental Markov chain state-properties needed for Gibbs sampling are 1) irreducibility,
2) recurrence, and 3) aperiodicity.

Definition E.1 (Irreducibility of Markov Chains). Consider a finite Markov chain

with state space S ∆
=
{
s1, s2, . . . , sM

}
. In a rough way of speaking, “irreducibility” means

any state in S can be reached from any other state in S. To make this precise the state-
classifying notion of “communicating” states is used, that is, si communicates with sj
(written si → sj) if the chain has positive probability of ever reaching sj when it starts
in state si. Communicating states may also be written by stating there exists a natural
number N , such that,

Prob(Xm+N = sj | sm = si) > 0. (E1)

Note that for a homogeneous Markov chain this probability is independent of m. If si → sJ
and sj → si, then the states si and sj are said to intercommunicate, this is written as
si ↔ sj.
Communication of states can be shown to be an equivalence relation (see [Ros96]).
A Markov chain with state space S is said to be irreducible if for all pairs of states si, sj ∈ S
we have si ↔ sj.
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Remark E.1. If a Markov chain is not irreducible it is then reducible. This means the
long term behaviour of such a chain may be analysed by one or more smaller state space
Markov chains, hence the term “reducible”

Definition E.2 (Recurrence). A Markov chain X is said to be recurrent if the following
certain event holds for all states,

prob
(
XM = si for infinitely many M

)
= 1. (E2)

Definition E.3 (Aperiodicity). A definition of aperiodicity first requires basic notions
of divisibility of integers. A common divisor of two integers a and b is a third integer d
such that d|a and d|b. The greatest common divisor (g.c.d.) of two non-zero integers a
and b, is the largest d, such that both d|a and d|b. The g.c.d. is sometimes referred to as
the highest common factor (h.c.f.). Clearly the g.c.d. can be extended to a collection of
more than two integers.
The period of a state si of a Markov chain is defined by

`i
∆
= g.c.d.

{
M ∈ N |M ≥ 1, pMii > 0

}
. (E3)

Here
pMii = prob{Xn+M = si | Xn = si}. (E4)

If `i = 1 for all states in a Markov chain, then that chain is said to be aperiodic.

Remark E.2. Loosely speaking, the period `i of a Markov chain is the g.c.d. of the set of
times (discrete indexes representing time) the chain in question can return to si given it
started in si.

Indeed much more can be said about the definitions above, the interested reader is
referred to [Bre99]

The main consequences for a Markov chain having these three properties is the exis-
tence of a stationary distribution (other important properties are the strong law of large
numbers will hold and also the chain will be ergodic).
Consequently, the basic idea of Gibbs Sampling is to identify a Markov chain whose sta-
tionary distribution is the distribution of interest, or a good approximation to it. Then
one samples this Markov chain in an appropriate way to generate samples from the orig-
inal target distribution, from which all statistics of interest can be estimated. In LDA
this approximation substantially reduces the dimension and complexity of the estimation
tasks given the large dimensions usually arising in LDA topic modelling problems.

Remark E.3. It should be noted that the above definitions consider Markov chains on a
finite state space, however, Gibbs sampling is not limited to such Markov chains and can
be extended to far more general state spaces. This however raises natural questions about
the extensions of the above definitions and the existence of a corresponding stationary
distribution in such settings. The details of this extension for Gibbs sampling are not
trivial and must consider more delicate definitions, such as a transition probability Kernel
rather than a transition matrix. For example, suppose we write the transition Kernel from
the vector x to the vector y (both in Rd), as Q(x,y). Then for A ⊂ Rd

prob
(
Y ∈ A |X = x

)
=

∫
A
Q(x,y)dy. (E5)
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Now the analogue of solving the balance equations for a Markov chain is finding a solution
to an integral equation, namely

π(y) =

∫
Q(x,y)π(x)dx. (E6)

If a solution to (E6) can be found then π(y) is the corresponding stationary distribution.
These details can be found in [MT93],[CMR05] and [RC05].

E.3 Example

Finally, to fix some basic ideas of Gibbs sampling we recall a commonly studied example
concerning a bivariate distribution. In some sense this example is vacuous given it concerns
a bivariate density and so can be directly addressed, however, this example does offer a
clear and convincing illustration of the Gibbs sampling technique and it’s trivial to encode
in a digital computer.

In this example we consider a bivariate probability density where one variable is integer-
valued with finite range and the other variable is continuously-valued on the compact set
[0, 1]. Explicitly, our joint density has the form,

f(k, y) =

(
N

k

)
yk+α−1(1− y)N−k+β−1 ∈ N× [0, 1]. (E7)

Here k takes value in the set {0, 1, 2, . . . , N}, and y ∈ [0, 1].
Obviously it’s not immediately clear how one might sample from the non-trivial density
given at (E7). Further, it’s also not a simple task to compute basic statistics such as the
mean and variance for the density at (E7). By inspection however, one might guess that
k is some type of random variable with a binomial distribution and that y is some sort of
Beta distributed random variable.
Suppose we assume y is known and fixed, then

prob(k | y) ∝
(
N

k

)
yk(1− y)−k (E8)

for all k ∈ {0, 1, . . . N}.
Similarly we suppose k is fixed and known, then,

prob(y | k, α, β) ∝ yk+α−1
(
1− y

)N−kβ−1
. (E9)

Here α > 0 and β > 0.
It can be shown that the probability density for k alone has the following form,

f(k) =

(
N

k

)
Γ(α+ β)

Γ(α)Γ(β)

Γ(k + α)Γ(N − k + β)

Γ(α+ β +N)
. (E10)

This exact probability density is useful to compare against the Gibbs Sampler.
Following the article [CG92], we consider an explicit scenario with α = 2, β = 4 and
N = 16.
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Algorithm 3 Gibbs Sampling Algorithm

1: Choose a number of iterations K ∈ N, K ≥ “burn in”
2: By some means choose an initial k ∈ {0, 1, 2 . . . , 15}
3: Last-k is assigned the value k
4: for ` = 1, 2, 3, . . . ,K do
5: Sample y` ∼ Beta(Last-k + 2, 16 + 4)
6: Sample k` ∼ Binomial(N, y`)
7: Last-k is assigned the value k`

8: Store Gibbs-sequence value: Θ`
∆
= (y`, k`)

9: end for

Consequently the Gibbs sampling algorithm for the joint density (E7) is given in algo-
rithmic form at Algorithm (3). Our Gibbs sampler was run 500 times with a realisation
length of 2000 samples. At the conclusion of each of the 500 runs the final value for k was
stored. Using these k values an empirical estimate was computed for the probability dis-
tribution. This estimate was then compared against the exact distribution function which
was computed via the density given at (E10). The estimated (cumulative) distribution
function was computed in Matlab with the Kaplan-Meier estimator (see [ABGK93, LK58]).
The results of this comparison are shown in Figure E1. Typical Gibbs sampler realisations
of (k, y) are also shown in Figure E1.

Figure E1: Gibbs Sampler example for the bivariate density given at (E7)
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Appendix F Sample Elicited Text Data

This Appendix provides a sample of real elicited text data. This data set was collected at
the NICTA/DSTO Text collection day and is shown here. Each text entry is tagged with
a date stamp and time stamp and also with an index labelling a specific (but anonymous)
workshop attendee. This particular data-set was generated in the session corresponding
to Table 2 of §??. The remaining two sessions from this workshop generated similar data
sets. The example below is included here to show a sampling of typical elicited text from
a collection of uses. Note that some attendees use punctuation and so do not, some use
capitalization and some do not, etc.

� 1.1 Publications and Journal Rankings
Submitted by 19 (2011-03-24 22:14:55)

� 1.2 The number of citations both primary and secondary citations
Submitted by 14 (2011-03-24 22:15:15)

� 1.3 understanding / interpretation of the research
Submitted by 21 (2011-03-24 22:15:28)

� 1.4 Against the standard criteria of number publications, media used for publishing,
citations
Submitted by 2 (2011-03-24 22:15:28)

� 1.5 Our understanding of problems improves .
Submitted by 6 (2011-03-24 22:15:34)

� 1.6 Several ways of measuring the value of research - publications, general interest,
applications with a definable benefit. However, in my opinion, the BEST way of
measuring the value of research is not what it solves, but the number of new questions
it opens up for further research
Submitted by 9 (2011-03-24 22:15:41)

� 1.7 Depends on the funding source. Value to university is rather nebulous: fame,
useful to students, publicity, awards gained, funding subsequently gained.
Submitted by 4 (2011-03-24 22:15:41)

� 1.8 number of citations
Submitted by 6 (2011-03-24 22:15:42)

� 1.9 In relation to applicability and generalisability of research outcomes; practical
value of work
Submitted by 2 (2011-03-24 22:16:04)

� 1.10 Research can be measured in a number of ways, both short-term and long-term.
Short-term measurements include number of publications, direct funding grants for
that research, patents granted and patents licensed, or external auditing. Long-
term research is probably best measure in terms of influence, that is the number
of citations that work has received after five or ten years (also residual long-term
technology and patent licensing).
Submitted by 5 (2011-03-24 22:16:14)
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� 1.11 Measures should be quantifiable and meaningful.
Submitted by 4 (2011-03-24 22:16:22)

� 1.12 Research is best measured by the amount of subsequent product that produced
by the research results.
Submitted by 17 (2011-03-24 22:16:30)

� 1.13 Future outcome (money, businesses, renewal of science) based on this research
Submitted by 2 (2011-03-24 22:16:31)

� 1.14 impact on the direction of other research teams
Submitted by 14 (2011-03-24 22:16:53)

� 1.15 Decisions made based on the research. Contributions to and assisting existing
research. Outcomes in the form of new inventions. Adding to body of existing
information. Providing an understanding of a particular problem
Submitted by 11 (2011-03-24 22:16:59)

� 1.16 Basic and applied research (and the many shades between) require different
measurements since basic research tends to have a longer time before it has impact
whereas applied research has more immediate results.
Submitted by 1 (2011-03-24 22:17:09)

� 1.17 improvements in quality of life (medicine), better understanding of natural
phenomena. Reduces the influence of dogma.
Submitted by 6 (2011-03-24 22:17:12)

� 1.18 The value of research cannot be measured. If I knew what the result is, it is
not research.
Submitted by 17 (2011-03-24 22:17:22)

� 1.19 I would tend to believe more strongly in long-term measurements than short-
term measurements, but funding agencies of course must rely on short-term mea-
surements except when funding people, who have an established track record.
Submitted by 5 (2011-03-24 22:17:27)

� 1.20 Relation resources put to the research and value got from it
Submitted by 2 (2011-03-24 22:17:28)

� 1.21 Carefully.
Submitted by 1 (2011-03-24 22:17:30)

� 1.22 Value could be indirect, like Central Limit Theorem, which is a fundamental
thing used elsewhere.
Submitted by 4 (2011-03-24 22:17:31)

� 1.23 Depends on industry and comparing timelines of similar problems. Is there a
tangible outcome or product from the research. Will development continue when
the research is completed.
Submitted by 20 (2011-03-24 22:17:31)

� 1.24 The value of a research depends on who is measuring it. For universities, it will
depend on the amount of citations it receives and publication rankings
Submitted by 19 (2011-03-24 22:17:57)
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