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ABSTRACT  
 
Clustering is a data mining technique for analysing large data sets and finding groups of 
elements within the data set that are similar to each other. The use of clustering on 
archives of historical air surveillance track data would enable the discovery of flights that 
exhibited similar behaviour and followed similar flight paths. However there are many 
different clustering algorithms available, so some method for selecting the best from the 
competing algorithms is required. Unfortunately the academic literature has yet to provide 
a general, comprehensive, and robust methodology for this task. Further the niche nature 
of the problem domain means the academic literature provides no direct assistance by way 
of reporting practical experience in the use of particular algorithms on air surveillance 
track data. This report aims to fill the gap by describing such a methodology for 
evaluating and choosing between competing clustering algorithms.  
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Towards an Evaluation of  

Air Surveillance Track Clustering Algorithms via 
External Cluster Quality Measures 

 
 

Executive Summary  
 
Clustering is a data mining technique for analysing large data sets. The technique finds 
groups of elements within the data that are similar to each other, but different from other 
data elements outside the group. The use of clustering on archives of historical air 
surveillance track data would enable the discovery of groups of flights that followed the 
same flight path. This could enable improved capability in a variety fields including 
situational awareness, tactical air intelligence (automated behavioural prediction and 
anomaly detection, indicators and warnings, etc.), strategic air intelligence (historical 
analysis, capability assessment, etc.), and general efficiency dividends (higher performance 
of air surveillance and air intelligence operators, improved training and knowledge 
retention practices, etc.). 
 
However there are many different clustering algorithms available, so before clustering can 
be used a method for selecting the best from the competing algorithms is required. 
Unfortunately the academic literature has yet to provide a general, comprehensive, and 
robust methodology for this task. Further the niche nature of the problem domain means 
the academic literature provides no direct assistance by way of reporting practical 
experience in the use of particular algorithms on air surveillance track data. 
 
This report aims to fill the gap by describing a methodology for evaluating and choosing 
between competing clustering algorithms. Note that this report does not describe the 
outcome of actually performing an exhaustive evaluation and selection process. Rather, 
this report describes the  methodology and experience from a trial of the methodology on 
a test data set of air surveillance track data. The experience was generally positive, in that 
the methodology achieved the desired outcome, however it is concluded improvements to 
the methodology can and should be sought. 
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1. Introduction 

The context for this report is capability development in the area of air surveillance. In 
particular, the goal is to analyse and exploit archives of historical air surveillance track data to 
identify groups of flights that exhibited similar behaviour and followed similar flight paths. 
This form of analysis could enable improved capability in a variety fields including situational 
awareness, tactical air intelligence (automated behavioural prediction and anomaly detection, 
indicators and warnings, etc.), strategic air intelligence (historical analysis, capability 
assessment, etc.), and general efficiency dividends (higher performance of air surveillance and 
air intelligence operators, improved training and knowledge retention practices, etc.). 
 
Clustering is a data mining technique for analysing large data sets and finding groups of 
elements within the data set that are similar to each other. An introduction to the topic is 
beyond the scope of this report; the reader is directed to a popular textbook by Han and 
Kamber (2006) for an introduction and an article by Jain, Murty and Flynn (1999) for the most 
comprehensive survey of clustering algorithms in academic literature. 
 
The suitability of clustering for exploiting air surveillance track data was explored in RPDE 
Task 20. The experience of that task was promising. A capability demonstration system using 
clustering was built and assessed by air surveillance experts, who formed the opinion that the 
system was successful, on a rudimentary level at least, in facilitating capability enhancements 
of the type mentioned previously. However, that project deliberately avoided the question of 
how to evaluate and choose between different clustering algorithms as the goal was to 
demonstrate that at least one clustering algorithm with some degree of effectiveness existed. 
 
This report describes a methodology for evaluating and choosing between different 
algorithms. Note that this report does not describe the outcome of actually performing an 
exhaustive evaluation and selection process. Rather this report describes a methodology that 
would enable that selection process to be undertaken in a rigorous fashion, and experience 
from a trial of the methodology on a test data set of air surveillance track data. 
 
 
 

2. Selecting a Clustering Algorithm 

The field of data clustering has a long history, with many different algorithms being described 
in academic literature. As an indication, the review by Jain, Murty and Flynn (1999) contains 
over 200 references. Given the range of choice, a basis for selecting an algorithm must be 
established. 
 
 
2.1 Fitness For Purpose 

In selecting an algorithm, some general fitness-for-purpose criteria can be applied. Three 
broad criteria can be considered: the form of input assumed by the algorithm, form of output 
produced by the algorithm, and any parameters that the algorithm requires for operation. 
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2.1.1 Input Assumptions 

To be suitable for the task at hand, we need an algorithm that at the very least is capable of 
operating over air surveillance track data. 
 
On the whole, the operation of a clustering algorithm consists of two distinct aspects. Firstly 
there needs to be a distance or similarity function that can be applied to two elements from the 
data set to produce a non-negative real number describing how close or similar to each other 
those elements are. Secondly the algorithm needs to have a strategy for using that function to 
analyse the structure of the input data set and produce a result describing patterns within the 
data.  
 
Therefore we can consider “generalist” algorithms that use a general strategy and can operate 
on any type of data, including air surveillance track data, provided the algorithm is furnished 
with a distance function suitable for this type of data. For example, the DBSCAN algorithm 
(Ester et al 1996) describes a general strategy based on notions of “neighbourhood” and 
“density” induced from any suitable distance function.  
 
Alternatively we might consider “specialist” algorithms that describe a specific distance 
function for track data and a specialised strategy for exploiting that specific distance function. 
For example, the TRACLUS algorithm (Lee, Han & Whang 2007) is specifically designed to 
operate on track data and describes a specialised method for pre-processing tracks and 
assessing the similarity between segments of tracks. 
 
However we can exclude specialist algorithms that make assumptions about the input data 
that are not met by air surveillance track data. For example the BIRCH algorithm (Zhang, 
Ramakrishnan & Livny 1996) is specifically intended for operation over a collection of 
uniformly-dimensioned real number vectors. The algorithm’s strategy involves building a 
tree-like data structure that captures the distribution of the input data within its vector space 
using summary vectors generated by real vector arithmetic. Hence the BIRCH algorithm 
could not be used, as is, on track data. 
 
2.1.2 Output Form 

In general the output of a clustering algorithm is a mapping that assigns each element of the 
input data set to a cluster. However, there is some variety in the nature of the output from 
clustering algorithms. For example some algorithms will produce a soft or fuzzy clustering 
where a data element may be assigned to multiple clusters, potentially with a number 
indicating the strength of association to each cluster. Some algorithms produce a hierarchical 
clustering, in which clusters may be further grouped into clusters of clusters, which are 
further grouped into clusters of clusters of clusters, and so on. 
 
Therefore when considering algorithms the suitability of form of the algorithm’s output and 
the way that output is to be exploited should be considered. Strictly speaking it is not 
necessary to exclude any particular output form, since in general output formats can be 
transformed. For example, a fuzzy clustering output can be transformed to a hard clustering 
by selecting the most likely cluster for each data element. However intuition would suggest it 
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best to avoid the complexity and assumptions in algorithms that produce output structure 
that is not relevant to the task at hand. 
 
2.1.3 Parameter Requirements 

In general, clustering algorithms will leave one or more of the parameters controlling their 
behaviour unspecified. Operation of the algorithm on a particular data set requires the 
selection of values for those parameters. This can have implications for the suitability of the 
algorithm to a particular task. 
 
For example, some algorithms require specification of thresholds that are used to determine 
whether the underlying structure discovered in the input data is significant. For such 
algorithms the number of clusters in the output of the algorithm is variable and will depend 
on the input data as well as the parameter selection. The DBSCAN and TRACLUS algorithms 
mentioned previously are examples of this type of algorithm. 
 
In contrast, some algorithms require specification as a parameter the number of clusters to be 
present in the output. These algorithms will always produce the specified number of clusters 
in the output, regardless of whether they are “true” clusters (in the sense of reflecting 
significant underlying structure in the input data). The well-known K-means algorithm 
(MacQueen 1967) is a prominent example of this type of algorithm. In the context of clustering 
air surveillance track data, where the number of clusters is not known a priori, such algorithms 
are unsuitable. 
 
2.1.4 Assessment of Competing Algorithms 

The fitness-for-purpose criteria discussed above allow the field of choice to be narrowed, but 
not to the extent that a single algorithm is clearly the best for clustering air surveillance track 
data. And even if a single algorithm were to be chosen on some basis, there remains the issue 
of selecting values for the algorithm's operational parameters. To optimise this selection, a 
method of exploring the choices and assessing their merit is required. This task is generally 
referred to as cluster quality assessment.  
 
A comparison of different algorithms and parameters can be achieved by executing them over 
a test data set and applying some function to the outputs to rate their quality. The function 
could be a “goodness” or “quality” function, where higher numbers are interpreted as better. 
Alternatively the function could be a “badness” or “error” function, where higher numbers 
are interpreted as worse. Either way, such functions allow a comparative assessment to take 
place. 
 
In general there are two distinct kinds of cluster quality measure: internal and external 
measures. An internal measure is one that operates on a clustering result and assesses its 
structure in terms of some abstract notion of the kind of structure that should be present in an 
ideal clustering result. An external measure of cluster quality is essentially a function that 
assesses the similarity between two different clusterings, and relies on some kind of “gold 
standard” (i.e. a test data set and a pre-defined clustering of that test data set produced 
manually by an expert). The manually produced clustering is treated as the ideal output for an 
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algorithm to produce. Then the output of any algorithm applied to that data set can be 
assessed in terms of how similar it is to the ideal. 
 
 
2.2 Clustering Quality Assessment with Internal Measures 

The use of an internal measure for assessing the results obtained via different algorithms and 
parameter settings is attractive, if for no other reason, because it avoids the effort of hand-
crafting an ideal result for external measures to compare an algorithmic result against. 
 
However we are still faced with the dilemma of selecting an internal quality measure from 
amongst the many that could be employed. It is easy to develop a function that applies to a 
clustering result and yields a real number; for example an empirical study reported by 
Nguyen and Rayward-Smith (2008) involved 44 distinct functions which the authors obtained 
by considering functions described in previous literature and generating additional functions 
by variation on themes. 
 
Different internal quality measures will produce different values and rankings when they are 
used to assess algorithms, so there is the issue of which measure to use. There are indications 
on both analytical and empirical grounds that care should be taken in this regard. 
 
2.2.1 Internal Measures Based on Pathological Ideals 

There is the issue of what precisely a quality measure considers to be the ideal for a clustering 
result. Consider, for example, the sum of squared distances from the centroid measure. Given k 
clusters denoted C1, C2, ..., Ck, with ci denoting the centroid of cluster Ci, and δ denoting a 
distance function, then the measure is: 

 
That is, for each cluster, compute the square of the distance between each element of the 
cluster and the cluster's centroid, and take the sum of all these squared distances. This is an 
error style measure; zero is the minimum possible value and higher values indicate lower 
quality. Intuitively, this seems to be generally suitable as a cluster quality measure. 
 
However consider the behaviour of this measure in extremis. First, consider a hypothetical 
perfect algorithm that is able to produce output indistinguishable from what a human expert 
deems perfect. Even in this circumstance, the measure will assign a non-zero value to the 
clustering. In other words this measure will describe a clustering result as having some degree 
of error even if a human expert would describe that result as perfect. 
 
Further, consider the nature of a clustering result that this measure would actually describe as 
having no error. Such a result will necessarily have the same number of clusters as there are 
distinct data elements of the input data; each data element assigned to a separate cluster 
containing only itself. So the ideal, perfect result according to this quality measure is the 
clustering in which no structure is reported by the algorithm. The perfect algorithm would be 
one that does no work and essentially returns the input data set as the output result. 
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Note that the well-known K-means algorithm is explicitly designed to find a solution that 
minimises this very measure. Yet K-means has been in use for over four decades and remains 
popular. This apparent paradox is resolved when one considers the fact that K-means requires 
the number of clusters in its output to be specified as a parameter. So the algorithm is 
constructed in a way that constrains the solutions it will consider, and this prevents the search 
for solutions from descending towards the pathological result that attempting to minimise the 
measure would otherwise encourage. 
 
2.2.2 Empirical Evidence Regarding Internal Measures 

Nguyen and Rayward-Smith (2008) report an experiment in which a variety of cluster results 
were ranked with a variety of internal cluster quality measures. They found that the different 
quality measures were not always in agreement, and in particular the result given first rank 
by some particular measure was typically not given first rank by the other measures. Also, 
they found that some measures gave first rank to semi-synthetic results that the researchers 
had deliberately constructed to be sub-optimal. Similar experience was reported by Raskutti 
and Leckie (1999). 
 
2.2.3 Corollary 

The foregoing discussion leads to the conclusion that it would be dangerous to naïvely choose 
some internal cluster quality measure that intuitively seems an apt measure, and proceed to 
evaluate algorithms solely on the basis of that measure. For any given analytical goal and data 
domain, before the quality of the output of competing clustering algorithms can be assessed 
with internal cluster quality measures, an empirical study will be needed to select the measure 
that is best suited for assessing the competing algorithms. 
 
Such an empirical study would be of the form described by Nguyen and Rayward-Smith 
(2008). It would necessarily involve the generation of a collection of clusterings with known 
quality, so that the ranking given by an internal quality measure can be compared for 
consistency with the known true ranking. A minimal procedure for obtaining such a collection 
of clusterings is to have a human expert manually construct the ideal clustering, and then 
automatically generate a sequence of suboptimal clusterings by progressive random 
permutation of the ideal. 
 
 
2.3 Clustering Quality Assessment with External Measures 

If one is resigned to the effort of manually constructing a gold-standard clustering for some 
test data set as a necessary part of any procedure to select between competing clustering 
algorithms, then it would be sensible to simply use that gold-standard clustering to directly 
assess the quality of an algorithm's output. As noted before, an external cluster quality 
measure is a binary function that takes an ideal clustering as one parameter and an 
algorithmically generated clustering as the other parameter, and returns a number to 
characterise the similarity (or lack thereof) between the ideal and algorithmically generated 
clusterings. Once the effort of constructing the hand-crafted ideal clustering has been made, 
selecting from competing clustering algorithms is straight-forward; simply select the 
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algorithm that, when applied to the same test data, produces output most like the gold-
standard. 
 
Note that we still have the dilemma of selecting the external quality measure that does the 
best job of assessing the similarity between clusterings. However this report proposes a 
methodology for achieving this. The methodology requires some prior experience; specifically 
experience with at least one clustering algorithm that produces output that is judged to be 
good in the sense of being similar to the ideal. Given this basis, the methodology allows 
selection of an external quality measure suitable for the type of data and analysis being 
performed, and has the convenient side-effect of "boot-strapping" the subsequent task of using 
the measure to choose between competing clustering algorithms. 
 
The methodology is motivated by the intuition that the measure should readily discriminate 
good clusterings from bad clusterings, and that a random clustering will almost certainly be a 
bad clustering. If an external quality measure fails to recognise that random clusterings are 
generally quite bad, then it does not have a useful degree of discriminatory power. This is 
depicted in Figure 1. 

 

Figure 1: Discriminatory power of an external cluster quality measure 

More concretely, if the measure is applied to a collection of good clusterings, and also applied 
to a collection of random clusterings, then the distribution of the measure across these two 
collections should be well separated.  
 
Let M denote the measure. Let I denote the ideal clustering. 
 
Let G1, G2, ..., Gn denote a collection of good clusterings.  
 
Let R1, R2, ..., Rn denote an equal sized collection of random clusterings with broadly similar 
structure, in the sense of having a similar number of clusters and distribution of elements 
across the clusters as the good clusterings. 
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Let GM denote the set {M(I,G1), ..., M(I,Gn)} and let RM denote the set {M(I,R1), ..., M(I,Rn)}. 
 
Then let the discriminatory power of the measure be given by 
 

 

where μ denotes arithmetic mean and s denotes sample standard deviation. 
 
Based on this conception of discriminatory power, the following methodology can be used for 
first selecting the external quality measure with the best discriminatory power, and then using 
that measure to select amongst competing clustering algorithms. 

1. Choose a test data set that is generally representative of the type of data in which 
clustering will be performed.  

2. Manually construct an ideal clustering on the test data. 

3. Obtain a set of algorithmic clusterings by applying to the test data any number of 
clustering algorithms and parameter settings that are informally judged by an expert 
to be producing a good approximation of the ideal. 

4. Generate the same number of random clusterings, in a manner that produces 
clusterings with a broadly similar distribution of elements (in terms of the number of 
clusters and the number of elements in clusters). 

5. For all external quality measures under consideration, evaluate the measure's 
discriminatory power using the clusterings obtained in steps 3 and 4. 

6. Optionally, obtain the output of any additional clustering algorithms and parameter 
settings deemed worthy of evaluation. 

7. Select the clustering algorithm and parameter setting that produces output most 
similar to the ideal, as assessed by the measure with the highest discriminatory power. 

 
A trial of this methodology using air surveillance track data is reported subsequently in 
Section 3. 
 
 
2.4 Related Work 

Scholarly articles that address the same area as this report are rare. 
 
It is typical of the literature that when a new clustering algorithm or improvement on an 
existing algorithm is proposed, the justification is based on improved efficiency (in terms of 
time and space requirements for the computation). When the output quality is addressed at 
all, typically an informal argument that the output will be good is made on the basis of the 
algorithm's construction and its performance on nugatory data sets with known gold-
standards such as the famous Fisher iris data set (Fisher 1936). The articles that do go beyond 
this basic level of quantitative analysis typically involve contextual factors that limit the 
relevance to the current topic of air surveillance track data. 
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For example, Schmitzer-Torbert et al (2005) describe two internal cluster quality measures 
applied in the context of neurophysical experiments; specifically analysis of neuronal 
excitation recordings from multi-channel electrodes to discriminate noise from “true” voltage 
spikes. The authors claim the two internal cluster quality measures they assessed were good 
for this purpose because the measures were consistent with the judgement of a human expert. 
They are motivated by the same fundamental issue of finding a cluster quality function that is 
consistent with the judgement of a human expert so it can be used to assess clustering 
algorithm output. However, they do so in a context far removed from the context of this 
report; in particular, the two specific internal clustering quality measures they advocate 
cannot be applied to air surveillance track data. 
 
Meilă (2005) addresses the issue of comparative assessment of the merit of different external 
quality measures, but does so from a highly abstracted axiomatic perspective. 
 
Vinh, Epps & Bailey (2009) describe a quantitative analysis of three external quality measures. 
Specifically they consider measures adjusted for chance agreement and compare the well-
known Adjusted Rand Index with two other measures adjusted in the same manner. However 
their motivation is quite different from the present context, and aspects of their methodology 
limit its general applicability. Their methodology revolves around a carefully constructed 
synthetic test data set in which the number of true clusters is known, and using a specific 
clustering algorithm in which the number of clusters in the output is fixed by parameter to the 
algorithm. In addition their motivation and conclusions are tangential to this report; they are 
focussed on the nature of the adjustment for chance and delineating the general character of 
data sets for which the adjusted measures perform well. 
 
The literature does not appear to have received a comprehensive survey of the various 
measures that have been proposed. Some authors present brief and non-exhaustive surveys in 
the context of proposing new methodologies. Meilă (2007) provides a discussion of many 
previous approaches in the context of describing a new approach, and similarly Ben-Hur, 
Elisseeff & Guyon (2002) discuss a number of previous approaches by way of presenting a 
generalisation of those approaches. 
 
 
 

3. Experiments 

To make use of the methodology outlined in Section 2.3, a representative test data set must be 
selected. Section 3.1 describes the air surveillance track data set that was obtained for the 
experiment. The clusterings generated on this data for the experiment are described in 
Section 3.2. The external quality measures that were selected and used in the experiment are 
described in Section 3.3. The results and discussion thereof are given in Sections 3.4 and 3.5 
respectively. 
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3.1 Test Data 

The test data set is a collection of 5000 tracks, where each track is a sequence of fixes and each 
fix specifies a timestamp and a geodetic location (i.e. latitude and longitude relative within 
some geodetic coordinate system). Each track in the data set describes the real-world 
movement of an aircraft. The tracks were taken from the Recognised Air Picture (RAP) 
generated by RAAF 41 Wing. More precisely, the tracks were taken from an unclassified 
subset of the RAP. The subset covers the air space in and around Australia's Flight 
Information Region, but fixes and tracks corresponding to certain time periods, geographic 
regions, and flights are eliminated as part of a classification downgrading procedure. The data 
covers a period from approximately 2008-04-21 00:00 UTC to 2008-04-22 12:00 UTC. 

 

Figure 2: Tracks of the test data set 

Figure 2 shows a rendering of the test data set. The coastline of Australia is rendered in blue, 
and the tracks of the test data set are rendered in red. Note that individual tracks are rendered 
with thin lines - where there are numerous tracks following a similar flight path their 
rendering merges to form the thicker lines visible on the map. 
 
3.1.1 Data characteristics, filtering, and post-processing 

The RAP is a real-time product generated by collating and fusing data from numerous sources 
and sensors, including civilian and military air traffic control systems and radars. When an 
aircraft is flying within sensor coverage, ideally its position will be reported with a track that 
is updated at a rate of 5 fixes per minute. However, due to its nature as a real-time data 
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stream, the RAP unavoidably contains gaps and errors from numerous sources, such as noise 
and transient failures in sensors. Further, the logging system that was used to record the RAP 
data stream was itself subject to transient failures and data loss. The result was a raw data set 
with numerous errors including short tracks that are spurious (i.e. noise), single flights broken 
into multiple disjoint tracks in the data, and multiple separate flights by a single aircraft 
concatenated into a single track in the data. 
 
To address this, the raw data was post-processed to obtain the test data set. Tracks less than 30 
minutes in duration or less than 200 kilometres in total distance travelled were discarded. 
Tracks more than 5 hours in duration or more than 5000 kilometres in total distance travelled 
were also discarded. Further, tracks were discarded if they did not either start or finish in the 
vicinity of a major aerodrome (defined as the 30 busiest aerodromes in Australian territory, 
ranked by total aircraft movements, as compiled by Airservices Australia for 2010). The result 
of this filtering was a test data set dominated by routine passenger transport flights, including 
domestic flights between major cities, international flights to and from major cities, and also 
flights between major cities and remote locations (e.g. charter flights for "fly-in fly-out" 
workers at remote mine sites). However many other types of flights can be found in the data 
set; e.g. student pilots engaged in flying exercises, Coastwatch surveillance flights, police and 
medical transport helicopters, etc. The mean duration of the tracks is 83 minutes and the mean 
total distance travelled is 847 kilometres. 
 
Another post-processing action was to compress the raw track data using the Douglas-
Peucker algorithm (Douglas & Peucker 1973). This algorithm takes a sequence of points in a 
track and removes points such that the error caused by the removal (i.e. the distance between 
the original track and simplified version) is no greater than a given threshold. The aim was to 
reduce the computational expense for functions that measure track separation (these functions 
typically have a time complexity that is at least linear in the number of fixes in the two tracks). 
For pre-processing of the test data set a threshold of 250 metres maximum positional error 
was used. This led to an average compression rate of 90% for the tracks.  
 
A result of the simplification process is to change the distribution of the track update rates (i.e. 
the rate at which fixes are given in a track, averaged over the course of the track). The tracks 
that exhibit more straight flying can generally have more fixes removed without introducing 
significant error into the track. In the simplified test data, the mean track update rate is 
1.2 fixes per minute (i.e. approximately 50 seconds between fixes). There is however variation 
in this rate amongst the tracks; the least rapid is 0.03 fixes per minute and the most rapid is 
3 fixes per minute. For a given track the update rate can vary significantly over the course of 
the track. 
 
 
3.2 Test Clusterings 

This section describes the clusterings on the test data that were used in the experimental 
procedure. To follow the methodology proposed in Section 2.3, three types of clustering must 
be obtained. Firstly an ideal or "gold-standard" clustering must be manually generated by a 
human expert. Secondly one or more algorithmic clusterings that are known to be good 
approximations of the ideal must be generated. Thirdly a collection of randomly generated 
clusterings that are bad approximations of the ideal must be generated. 
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3.2.1 Hand-crafted Clustering 

 

Figure 3: Manual clustering of the test data 

The manually constructed clustering is shown in Figure 3. The clusters are depicted with red 
and green lines. The green lines depict the representative track of each cluster; i.e. the artificial 
track generated by averaging the component tracks in the cluster. 
 
The clustering was constructed using the basic criteria of at least three tracks starting and 
finishing at the same location, following the same approximate flight path, and travelling at 
the same approximate speed. The tracks that could not be assigned to a cluster in accordance 
with these criteria were marked as outliers, and are not depicted in Figure 3. The result was a 
clustering containing 415 clusters and 2030 outliers. The largest cluster contained 96 tracks, 
although most clusters were much smaller; the mean cluster size is 7.2 tracks per cluster, and 
the median cluster size is only 4 tracks per cluster. 
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Figure 4: Example cluster from manual clustering 

An example of a single cluster from the manual clustering is shown in Figure 4. This example 
is a cluster of routine passenger flights from Adelaide to Melbourne. As can be seen from the 
figure, there is some variation in the flight path amongst the tracks. However this is minor 
variation due to differences in prevailing wind and air traffic control directions received by 
different flights. The length of the flight path in this example cluster is 680 kilometres and the 
average flight time is 70 minutes, which corresponds to the expected behaviour for routine 
passenger transport flights made by turbofan-powered aircraft. A track in which the same 
flight path was flown at a slower speed (as would be the case with a turboprop-powered 
aircraft, for example) would not be included in the same cluster. 
 
3.2.2 Agglomerative Algorithmic Clusterings 

A set of clusterings were constructed algorithmically using a simple eager agglomerative 
strategy, two different track similarity functions, and a variety of parameter settings. The 
details are not particularly relevant in the present context so only a brief description is given 
below. 
 
Treat the tracks from the data as a queue of unprocessed tracks. Take the next track from the 
queue; call this track the "seed" track. Search the remaining content of the queue for other 
tracks that are close to the seed track. If at least 2 such other tracks are found, remove those 
tracks from the queue and form a cluster with the seed track. Otherwise, declare the seed track 
an outlier. Repeat until the queue is empty. 
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Within this strategy, two different track similarity functions were employed. The first function 
was simply the mean separation between two tracks, sampled over time. That is, take the 
separation between the position of the tracks at 1 minute after the start of each track, after 2 
minutes, et cetera, and take the mean of these separations. Previous experience had revealed 
this track similarity function combined with the eager agglomerative strategy tends to 
produce good output. This function is referred to as Mean in the following table. 
 
The other track similarity function also computes mean separation, but adds two refinements. 
Firstly, it adds a length mismatch penalty which increases the apparent separation between 
tracks by a factor of the difference in duration between the tracks. Secondly, a rolling window 
is used and the peak mean value as the window rolls over the duration of the tracks is used 
instead of computing the mean over the entire duration. Previous experience had suggest 
these refinements improve the output. This function is referred to as PRM (for "Peak Rolling 
Mean") in the following table. 
 
By combining these track separation measures with the algorithm strategy, clusterings were 
generated at six different separation thresholds. The basic statistics of the clusterings 
produced are listed in Table 1.  

Table 1: Algorithmic clusterings: parameters and basic statistics 

ID Separation 
Measure 

Measure Parameters Distance 
Threshold 

Num. 
Clusters 

Mean 
Cluster 

Size 

Median 
Cluster 

Size 

Num. 
Outliers 

Mean-30k 30 km 337 5.90 4 3011 
Mean-40k 40 km 416 8.63 5 1410 
Mean-50k 50 km 420 9.39 5 1055 
Mean-60k 60 km 403 10.28 5 858 
Mean-70k 70 km 369 11.62 6 712 
Mean-80k 

Simple 
Mean 

n/a 

80 km 350 12.54 6 611 
PRM:50-30k 30 km 427 7.49 4 1801 
PRM:50-40k 40 km 375 6.79 4 2454 
PRM:50-50k 50 km 405 7.06 4 2139 
PRM:50-60k 60 km 412 7.46 4 1928 
PRM:50-70k 70 km 427 7.76 4 1685 
PRM:50-80k 

Peak 
Rolling 
Mean 

Rolling window 
size = 15 mins. 

Length mismatch 
penalty = 50 

metres/second. 

80 km 427 8.18 5 1507 
PRM:250-30k 30 km 337 5.90 4 3011 
PRM:250-40k 40 km 364 6.48 4 2643 
PRM:250-50k 50 km 400 6.71 4 2318 
PRM:250-60k 60 km 404 7.17 4 2125 
PRM:250-70k 70 km 412 7.47 4 1922 
PRM:250-80k 

Peak 
Rolling 
Mean 

Rolling window 
size = 15 mins. 

Length mismatch 
penalty = 250 
metres/second. 

80 km 427 8.18 5 1507 
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Figure 5: Example of an algorithmic clustering of the test data 

An example of the algorithmic clustering results is shown in Figure 5. In particular, the figure 
is of the result PRM:50-50k, and as with the previous figures the outlier tracks are not shown. 
The results appear consistent with the manual clustering. For example, the cluster of Adelaide 
to Melbourne flights found in the manual clustering and depicted in Figure 4 has a 
counterpart discovered by the algorithm, depicted below in Figure 6. The algorithm has 
succeeded in finding a cluster that appears to be the same as the manually created cluster, 
however there are some small differences between the clusters which are more apparent on 
closer examination. Also there are other discrepancies between the clusterings; e.g. some small 
clusters in the ideal are missed entirely by the algorithm. 
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Figure 6: Example cluster from an algorithmic clustering; good match to manual cluster in Figure 4 

It is important to note that the examples in Figures Figure 5 and Figure 6 were deliberately 
selected because they were generated with parameter settings that induced the algorithm to 
produce clusters similar to the manual clustering. Other results from less favourable 
parameter settings contained lower quality clusters; for example see Figure 7 which depicts a 
cluster from result Mean-80k. Because of the high threshold for considering tracks sufficiently 
close to form a cluster, the algorithm has formed a single cluster from flights between 
Brisbane and five distinct regional towns. In the manual clustering, these flights are placed 
into separate clusters. 
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Figure 7: Example cluster in an algorithmic clustering; matches a merging of multiple manual clusters 

 
3.2.3 Random Clusterings 

A set of clusterings were also constructed by random allocation. The allocation was controlled 
by two parameters - the fraction of outliers p and the number of clusters k. Each track is either 
assigned to the outliers with probability p or to clusters with probability 1-p, and the non-
outliers tracks are assigned to clusters with uniform probability. 

Table 2: Random clusterings: parameters and basic statistics 

ID Expected 
Num. Clusters 

Expected % 
Outliers 

Actual Num. 
Clusters 

Mean Cluster 
Size 

Median 
Cluster Size 

Actual Num. 
Outliers 

Rand-300-10 10% 300 14.96 14 513 
Rand-300-20 20% 300 13.35 13 994 
Rand-300-30 30% 300 11.62 11 1515 
Rand-300-40 40% 300 10.27 10 1920 
Rand-300-50 50% 300 8.17 8 2550 
Rand-300-60 

300 

60% 299 6.60 6 3026 
Rand-400-10 10% 400 11.27 11 493 
Rand-400-20 20% 400 10.00 10 1001 
Rand-400-30 30% 400 8.81 9 1475 
Rand-400-40 40% 400 7.46 7 2018 
Rand-400-50 50% 400 6.23 6 2507 
Rand-400-60 

400 

60% 397 4.99 5 3020 
Rand-400-10 10% 500 9.02 9 486 
Rand-500-20 20% 500 8.01 8 995 
Rand-500-30 

500 

30% 500 7.02 7 1488 
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ID Expected 
Num. Clusters 

Expected % 
Outliers 

Actual Num. 
Clusters 

Mean Cluster 
Size 

Median 
Cluster Size 

Actual Num. 
Outliers 

Rand-500-40 40% 500 5.96 6 2020 
Rand-500-50 50% 496 5.03 5 2503 
Rand-500-60 60% 490 4.19 4 2949 

The basic statistics of the random clusterings generated are listed in Table 2. Note that the 
actual number of clusters and outliers varies slightly from the expected number because of the 
random generation. In particular, if a cluster had no tracks assigned to it then it was omitted 
from the result. 

 

Figure 8: Example of a random clustering of the test data 

An example of the random clusterings is shown in Figure 8. It is clear that the random 
clusterings are rather poor quality in that they bear no resemblance to the hand-crafted ideal. 
 
 
3.3 External Quality Measures 

First, some basic notation will be introduced. Then the external quality measures used in the 
experiment will be introduced. 
 
3.3.1 Notation 

A data set D contains N elements d1, d2, ... dN.  

UNCLASSIFIED 
17 



UNCLASSIFIED 
DSTO-TR-2800 

A clustering C of D is a k-partition of D; that is k clusters C1, C2, ..., Ck such that  

 
  and 

 
Let ni denote the size of cluster Ci. 

Also let C' denote a clustering, with k' clusters C'1, C'2, ..., C'k', and n'j denote the size of 
cluster C'j. 

Then given two clusters, Ci in C and C'j in C', let  

 
That is, mij denotes the number of data elements in common between two clusters taken from 
different clusterings. Note that in the nomenclature of bivariate statistics, by treating the 
clusterings as probability distributions over their clusters, the matrix [mij] would be the 
contingency matrix of their joint distribution. 
 
In addition, consider the set of all unique pairs of distinct elements (di, dj) from D; then let 
 

M11 denote the number of pairs where di and dj are assigned to the same cluster in C, and 
di and dj are also assigned to the same cluster under C', 

 
M00 denote the number of pairs where di and dj are assigned to different clusters in C, and 

di and dj are also assigned to different clusters under C', 
 
M10 denote the number of pairs where di and dj are assigned to the same cluster in C, but di 

and dj are assigned to different clusters under C', and 
 
M01 denote the number of pairs where di and dj are assigned to different clusters in C, but 

di and dj are assigned to the same cluster under C'. 
Note that  

 
and that again these quantities can be viewed as the elements of a contingency matrix, this 
time between two binary variables. 
 
Previous authors have noted that most measures described in the literature can be specified as 
a formula using these notations. It is the case for all the measures used in the experiment 
reported here. It is worth noting that these quantities are related. For example Fowlkes and 
Mallows (1983) note that 
 

 
However the implications for a potential canonical or normalised notation sufficient to 
describe all measures does not appear to have been explored in the literature. 
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3.3.2 Measures Used 

Table 3 lists the measures used in the experiment, giving the formula of the measure and it's 
range. For each measure an abbreviation is given; these are used subsequently in Tables 4 and 
5 to refer to the measures. 

Table 3: External Quality Measures 

Measure Properties Formula 
1 ARI 

Adjusted Rand Index 
(Hubert & Arabie 

1985) 

Range: [-1, 1] 
Similarity 

2 FMI 
Fowlkes-Mallows 

Index 
(Fowlkes & Mallows 

1983) 

Range: [0, 1] 
Similarity 

 
3 JC 

Jaccard Coefficient 
Range: [0, 1] 

Similarity 

 
4 JMS 

"Jaccard Matrix Sum" 
(Torres, Basnet et al 

2008) 

Range: [0, 1] 
Similarity 

 
5 MM 

Mirkin Metric 
(Mirkin & Cherny 

1970) 

Range: [0, N2] 
Distance  

6 NMI 
Normalised Mutual 

Information 
(Strehl & Ghosh 

2002) 

Range: [0, 1] 
Distance 

 
7 RI 

Rand Index 
(Rand 1971) 

Range: [0, 1] 
Similarity 

 
8 VDM 

van Dongen Metric 
(van Dongen 2000) 

Range: [0, 2N] 
Distance 

 
9 VI 

Variation of 
Information 
(Meilă 2003) 

Range: [0, logN] 
Distance 

Notes: 

 The measures described as "similarity" measures are those for which higher values are 
to be interpreted as the clusterings being closer or more similar. For the ones described 
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as "distance" measures, higher values are to be interpreted as the clusterings being 
further apart or less similar. 

 The Adjusted Rand Index is the Rand Index adjusted to be relative to the expected 
value with a random clustering drawn from the same marginal distribution. Ideally 
the adjusted index would have range [0, 1], but in practice it can adopt negative 
values. 

 The Jaccard Coefficient measure follows naturally from the traditional measure of set 
similarity. It is obtained by considering the set of all unique pairs of distinct elements 
(di, dj) from D. Take the subset in which both elements of the pair are assigned to the 
same cluster in C. Also take the subset in which both elements of the pair are assigned 
to the same cluster in C'. Then simply compute the Jaccard Coefficient of these two 
subsets. 

 The title "Jaccard Matrix Sum" for the measure numbered 4 in the table above was 
chosen by the present author. The paper (Torres et al 2008) describing the measure 
does not give a name for it, and there do not appear to be any other extant papers 
citing the paper, let alone proposing a name for the measure. It is worth noting that 
(Torres et al 2008) is published in a low-quality venue and is a poor paper. It provides 
little analysis of the measure, and the claims regarding it are described as trivial 
results with no proof offered. None the less, the measure appears to be a novel and 
interesting approach, and is worth considering. 

 The formula of the Mirkin Metric given here is taken from (Ben-Hur, Elisseeff & 
Guyon 2002); the metric can also be formulated as the Hamming distance between 
binary vector representations of clusters. The metric can also be characterised as a 
translation and scaling of the Rand Index (Meilă 2005). 

 The Normalised Mutual Information measure is derived by treating a clustering as a 
probability distribution over its clusters, and then applying the well-known 
information-theoretic concepts of the entropy of a distribution and the mutual 
information of a joint distribution. In this context, if we use the typical information-
theoretic notations of H(C) for the entropy of clustering C, H(C') for the entropy of 
clustering C', and I(C,C') for the mutual information of their joint distribution, then 
the formula for the measure is simply 

 

From this perspective, the measure is to be interpreted as quantifying the information 
shared by the two clusterings and normalising by the geometric mean of the 
individual clustering entropies (which is an upper bound on the mutual information). 

 The Variation of Information measure is also derived from a straight-forward 
adaption of information-theoretic concepts. Using the notation above for entropy and 
mutual information, and also H(C|C') for conditional entropy, then the measure is 
simply 

 
From this perspective, the measure is to be interpreted as quantifying the information 
required to describe the difference between the two clusterings. 
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 The measures with a range that is a function of N can easily be normalised to the range 
[0,1] in the context of a given dataset which fixes N. This is convenient for some 
circumstances (e.g. comparing behaviour over multiple data sets); however in the 
context of the experiment reported here these normalisations are irrelevant as any 
scaling applied to a measure will not influence the outcome. 

 
3.3.3 Measures Not Used 

There are some additional measures that have been described in literature and come to the 
attention of this author, but which are not considered in this report due to computational 
tractability issues. 
 
Meilă and Heckerman (2001) describe a measure that considers clusters as arbitrary class 
labels, and involves searching for the map from one clustering to the other that will minimise 
classification error, and using this minimised classification error as the distance between the 
clusterings. Zhou, Li and Zha (2005) make a similar proposal, with an alternative formulation 
and more complexity as soft clusterings and weights on clusters are accommodated. For both 
of these proposed measures, the need for solving a complex optimisation problem as part of 
evaluating the measures makes them unattractive. Note that the cost of the optimisation-
solving portion grows super-linearly in the size of the clusterings being compared. 
 
Vinh, Epps and Bailey (2009) describes two measures named Adjusted Mutual Information 
and Adjusted Variation of Information. These take Mutual Information and Variation of 
Information as base measures, and adjust for chance using the same adjustment formulation 
that Hubert and Arabie (1985) used to derive the Adjusted Rand Index. The expression they 
derive includes, as terms, the factorial of large numbers; e.g. the factorial of the number of 
elements in the data set being clustered. It was found that computing this measure using 
arbitrary-precision integer arithmetic on the data set and clusterings used for this experiment 
was intractable. 
 
 
3.4 Discriminatory Power Evaluation 

The measures listed in Table 3 were evaluated using the methodology outlined in Section 2.3 
and the clusterings described in Section 3.2. 
 
The measures were used to assess the similarity or distance between the manually constructed 
clustering and the algorithmically generated clusterings. The measures were also used to 
assess the similarity or distance between the manually constructed clustering and the 
randomly generated clusterings. The results are presented in Table 4 and Table 5 below. Then 
the formula proposed in Section 2.3 for quantifying the discriminatory power of the measures 
was applied. These results are presented in Table 6. 
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Table 4: Similarity or distance between hand-crafted and algorithmic clusterings 

Clustering ARI FMI JC JMS MM NMI. RI VDM VI 

Mean-30k 0.6170 0.6628 0.4466 0.7208 29614 0.9579 0.9988 1368 0.9127 

Mean-40k 0.6562 0.6812 0.4893 0.6882 49134 0.9445 0.9980 1549 1.1099 

Mean-50k 0.5751 0.6170 0.4048 0.5713 69608 0.9282 0.9972 1909 1.4213 

Mean-60k 0.5375 0.5997 0.3689 0.4960 86672 0.9168 0.9965 2071 1.6357 

Mean-70k 0.4971 0.5720 0.3322 0.4318 103684 0.9046 0.9958 2255 1.8630 

Mean-80k 0.4531 0.5390 0.2944 0.3838 124060 0.8935 0.9950 2418 2.0673 

PRM:50-30k 0.7204 0.7245 0.5637 0.8004 32654 0.9560 0.9986 1316 0.8929 

PRM:50-40k 0.8174 0.8210 0.6917 0.8164 17654 0.9694 0.9992 985 0.6394 

PRM:50-50k 0.8180 0.8184 0.6926 0.8705 18996 0.9705 0.9992 911 0.6061 

PRM:50-60k 0.7876 0.7908 0.6503 0.8618 24392 0.9679 0.9990 943 0.6526 

PRM:50-70k 0.7527 0.7630 0.6043 0.7986 30944 0.9627 0.9987 1078 0.7531 

PRM:50-80k 0.7279 0.7454 0.5731 0.7472 36312 0.9574 0.9985 1200 0.8556 

PRM:250-30k 0.6170 0.6628 0.4466 0.7208 29614 0.9579 0.9988 1368 0.9127 

PRM:250-40k 0.7727 0.7842 0.6301 0.7828 20510 0.9655 0.9991 1118 0.7301 

PRM:250-50k 0.8009 0.8032 0.6684 0.8404 19602 0.9690 0.9992 976 0.6430 

PRM:250-60k 0.7802 0.7810 0.6403 0.8656 23810 0.9667 0.9990 1010 0.6828 

PRM:250-70k 0.7741 0.7776 0.6321 0.8566 26080 0.9656 0.9989 1019 0.7006 

PRM:250-80k 0.7279 0.7454 0.5731 0.7472 36312 0.9574 0.9985 1200 0.8556 

Table 5: Similarity or distance between hand-crafted and random clusterings 

Clustering ARI FMI JC JMS MM NMI RI VDM VI 

Rand-300-10 0.0000 0.0019 0.0009 0.1960 119572 0.7108 0.9952 6654 5.5345 

Rand-300-20 0.0004 0.0022 0.0011 0.2900 105850 0.7431 0.9957 6171 5.0276 

Rand-300-30 0.0000 0.0016 0.0008 0.3948 93726 0.7743 0.9962 5678 4.5226 

Rand-300-40 0.0005 0.0021 0.0010 0.4688 84200 0.7985 0.9966 5263 4.1144 

Rand-300-50 0.0002 0.0015 0.0006 0.5178 72778 0.8313 0.9970 4667 3.5475 

Rand-300-60 0.0003 0.0015 0.0006 0.5101 65850 0.8540 0.9973 4193 3.1421 

Rand-400-10 0.0000 0.0015 0.0007 0.2183 103210 0.7318 0.9958 6596 5.2101 

Rand-400-20 0.0000 0.0016 0.0008 0.3172 92276 0.7625 0.9963 6097 4.7164 

Rand-400-30 0.0000 0.0016 0.0007 0.4045 83932 0.7885 0.9966 5631 4.2863 

Rand-400-40 0.0000 0.0011 0.0005 0.5137 74948 0.8165 0.9970 5103 3.8089 

Rand-400-50 0.0000 0.0011 0.0004 0.5215 68328 0.8396 0.9972 4620 3.4011 

Rand-400-60 0.0000 0.0006 0.0002 0.5097 62534 0.8616 0.9975 4124 3.0053 

Rand-500-10 0.0000 0.0018 0.0009 0.2432 93586 0.7484 0.9962 6507 4.9454 

Rand-500-20 0.0006 0.0023 0.0011 0.3389 84692 0.7770 0.9966 5994 4.4772 

Rand-500-30 0.0000 0.0013 0.0006 0.4323 77084 0.8017 0.9969 5527 4.0625 

Rand-500-40 0.0006 0.0019 0.0008 0.5309 70570 0.8270 0.9971 4988 3.6241 

Rand-500-50 0.0001 0.0012 0.0004 0.5097 65040 0.8479 0.9974 4530 3.2537 

Rand-500-60 0.0000 0.0004 0.0001 0.5068 61410 0.8646 0.9975 4106 2.9509 
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Table 6: Discriminatory power and ranking of external cluster quality measures 

Rank Measure 
Discrim. 
Power 

Algorithm; 
Mean 

Algorithm; 
Sample Std 

Dev. 
Random; 

Mean 

Random; 
Sample Std 

Dev. 

1 Adjusted Rand Index 110.5    0.69075  0.11524 0.00003 0.00034 

2 Fowlkes-Mallows Index 106.3    0.71611  0.08868 0.00156 0.00051 

3 Jaccard Coefficient 90.10   0.53908  0.12824 0.00073 0.00028 

4 van Dongen Metric 6.212  1372 476 5358 865 

5 Variation of Information 5.174  0.9964 0.4474 4.0906 0.79992 

6 Normalised Mutual Information 4.538  0.95068 0.02369 0.79889 0.04725 

7 Jaccard Matrix Sum 2.325  0.72228 0.15222 0.41249 0.11664 

Rand Index 1.703  0.99827 0.00126 0.99671 0.00066 8 

Mirkin Metric 1.703  43314 31508 82199 16540 

 
 
3.5 Discussion 

The results in Table 6 indicate the measure with the most discriminatory power is the 
Adjusted Rand Index. However the second and third ranking measures - Fowlkes-Mallows 
Index and Jaccard Coefficient respectively - also offer a high degree of discrimination. The van 
Dongen Metric, and the two information-theoretic measures (Variation of Information and 
Normalised Mutual Information) can receive "honourable mentions" for having some 
discriminatory power. The three measures of Jaccard Matrix Sum, Rand Index, and Mirkin 
Metric perform poorly and do not exhibit any significant discriminatory power. 
 
When the relationships between the measures are considered, these results lead to some 
interesting observations. 

 The three best performers are all similarity measures where the empirically observed 
average value of the measure for random clusterings is near zero. 

 The Rand Index performs the worst, but when given an adjustment for chance in the 
manner proposed by Hubert and Arabie, it becomes the best performer. This suggests 
that the adjustment is indeed favourable in practice, despite the (arguably valid) 
theoretical criticisms made by Meilă (2005, 2007) against the assumptions behind the 
adjustment. 

 The result that the Rand Index and the Mirkin Metric have the same discriminatory 
power is to be expected. The formula for discriminatory power used here is invariant 
under linear translation or scaling of a measure, and as noted in Section 3.3, these two 
measures are related by an affine transform. 

 The Jaccard Coefficient is one of the simplest measures and is the oldest measure in 
the sense that it is a direct application of a set similarity measure that was described in 
1901. And despite being a general measure of set similarity, it performs better than 
most of the more complex measures specifically intended for clustering similarity that 
have been subsequently proposed. 
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4. Conclusion 

This report addressed the problem of clustering air surveillance track data; in particular the 
problem of how to make a selection from amongst the numerous competing algorithms that 
can operate on this type of data. Section 2 discussed issues surrounding this selection task, 
and proposed a methodology for achieving it. Section 3 reported the experience of a trial of 
that methodology. The experience of this trial was promising and suggests that further use 
and refinement of the methodology may be a worthwhile pursuit. 
 
Areas left for future work include: 

 Comprehensive exploration of existing or new algorithms for the quality of their output when 
applied to air surveillance track data. 

The use of a test data set that has a hand-crafted ideal, and the Adjusted Rand Index 
for assessing how similar the output of an algorithm is to the ideal, appears to be a 
valid approach for selecting between competing algorithms. 

 Further investigation of external quality measures in general.  

This is an area that has not received much attention in scholarly literature. Further 
analytical and empirical investigations, as seen in this report and some recent 
literature (Meilă 2005, 2007; Vinh, Epps & Bailey 2009), are warranted. In particular, 
the delineation of the general types of data and data exploitation goals that are best 
supported by particular measures remains open. 

 Refinement of the methodology. 

In particular, the formula for discriminatory power warrants further attention. There 
is already a well-established family of statistical measures for quantifying the 
similarity or lack thereof between two distributions. However these statistics are 
typically intended to test a specific null hypothesis - for example the Kolmogorov-
Smirnov statistic is used to test whether two samples are likely to have been drawn 
from the same distribution. This null hypothesis is not actually related to the concept 
of discriminatory power being used here, but none the less this family of statistical 
measures might offer inspiration. 
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