
UNCLASSIFIED

Globally Optimal Path Planning with

Anisotropic Running Costs

Jason R. Looker

Air Operations Division

Defence Science and Technology Organisation

DSTO–TR–2815

ABSTRACT

There are many diverse numerical methods that can be applied to solving path
planning problems, however most of these are either not valid or impractical
for solving anisotropic (direction-dependent) path planning problems. Ordered
Upwind Methods (OUM) are a family of numerical methods for approximating
the viscosity solution of static Hamilton-Jacobi-Bellman equations, and have
been tailored to solve anisotropic optimal control problems.

There is little information in the literature regarding the implementation of
OUM, and a wide range of computational techniques and meticulous algorith-
mic considerations are required to successfully implement OUM. A comprehen-
sive, generic implementation of OUM is documented in this report, with the
intention of minimising the technical barriers to employing OUM in real-world
applications.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO–TR–2815 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

Telephone: (03) 9626 7000
Facsimile: (03) 9626 7999

c© Commonwealth of Australia 2013
AR No. AR 015–556
March, 2013

APPROVED FOR PUBLIC RELEASE

ii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Globally Optimal Path Planning with Anisotropic Running
Costs

Executive Summary

Path planning is the task of selecting a path through an environment for an entity to
traverse such that a cost is minimised. Path planning has numerous applications, for
example, in robotics, computer game development, and controlling unmanned vehicles.
This report emerged from a study of path planning for military aircraft conducting missions
in hostile environments.

In this report, an entity is considered to follow a path in Euclidean space and incur a
strictly positive running cost at each instant in time. The (total) cost is the integral of
the running cost over the path, and the aim is to steer the entity through its environment
such that this cost is minimised.

The running cost is considered to be anisotropic, that is, it depends on the position
and velocity vector of the entity. Hence for anisotropic path planning problems, the cost
depends on the location of the entity in its environment and how it arrived at that location.
In applications, anisotropic running costs typically stem from heterogeneous environments,
and cases where the orientation of the entity has a significant impact on the cost.

There are many diverse numerical methods that can be applied to solving path planning
problems, however most of these are either not valid or impractical for solving anisotropic
path planning problems. Ordered Upwind Methods (OUM) are a family of numerical
methods for approximating the viscosity solution of static Hamilton-Jacobi-Bellman equa-
tions, and have been tailored to solve anisotropic optimal control problems. The focus of
this report is on the control-theoretic OUM.

There is little information in the literature regarding the implementation of OUM,
and a wide range of computational techniques and meticulous algorithmic considerations
are required to successfully implement OUM. A comprehensive, generic implementation of
OUM is documented in this report, with the intention of minimising the technical barriers
to employing OUM in real-world applications.

The control-theoretic OUM has been employed to solve a number of simple path plan-
ning problems in this report, to provide figures with which the reader can compare output
from their implementation of the OUM.

The application of OUM to the path planning of military aircraft traversing hostile
environments is the subject of a future report.

UNCLASSIFIED iii

DSTO–TR–2815 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Author

Jason Looker
Air Operations Division

Dr Jason Looker joined DSTO in 2006 as an Operations Re-
search Scientist after completing a BSc (Honours) and PhD in
Mathematics at The University of Melbourne. He has under-
taken operations analysis in support of Air Force Headquarters
and AIR 9000 Phase 8 (Future Naval Aviation Combat Sys-
tem), and is leading a research project on the path planning of
military aircraft through hostile environments.

UNCLASSIFIED v

DSTO–TR–2815 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

vi UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Contents

Glossary xi

Notation xii

1 Introduction 1

1.1 Optimal Control . 2

1.2 Admissible Controls . 3

1.3 Parametrisation . 4

1.4 Isotropic Running Costs . 4

2 Ordered Upwind Method 5

2.1 Computational Mesh . 5

2.2 Upwinding Approximation to the DPP . 5

2.3 OUM Sets . 6

2.4 The OUM Algorithm . 9

3 Implementation 10

3.1 Mesh Functions . 10

3.1.1 Mesh Transformations . 11

3.1.2 Mesh Construction . 12

3.1.3 Neighbourhood Functions . 12

3.2 Set Construction . 13

3.2.1 Adjacency Function . 13

3.2.2 AcceptedFront Construction . 14

3.2.3 AF Construction . 14

3.2.4 NF(i, j) Construction . 15

3.3 Tentative Value Function . 18

3.3.1 Local Minimisation . 18

3.3.2 Evaluation . 19

3.4 The OUM Algorithm Revisited . 21

3.5 Visualisation . 23

3.5.1 Path Reconstruction . 23

3.5.2 Level Sets . 27

UNCLASSIFIED vii

DSTO–TR–2815 UNCLASSIFIED

4 Examples 27

4.1 Isotropic Running Costs . 28

4.2 Anisotropic Running Costs . 30

5 Conclusion 33

References 34

Appendices

A Triangulated Mesh Based on a Cartesian Grid 39

B Verification of the AcceptedFront update rule 41

viii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Figures

1 An illustration of the Accepted (A), AcceptedFront (A), Considered (C) and
Far (dots) sets. The line segments of the AF set are indicated by lines with
arrowheads. 6

2 Definition diagram for illuminating the origins of the NF(x) set. 7

3 The N(i, j) set shown mapped onto Ωh as large dots, where the x(· , ·) are
given by Equation (17). 13

4 Definition diagram for the FindSimplex function (Algorithm 9), showing the
neighbours of xc = (xc, yc) ∈ Ωh and an example where the simplex xcx3x4

contains x ∈ Ω. 24

5 Uniform running cost (R = 1), showing level sets and an optimal path with
initial position x = (0.1, 0.1) and target location xT = (1, 1). 28

6 Isotropic running cost (given by Equation (30)), showing level sets and an
optimal path with initial position x = (0.1, 0.1) and target location xT =
(1, 1). The black squares represent obstacles, which have a side length of 0.1
and are located at (0.25, 0.5), (0.5, 0.3) and (0.65, 0.75). 29

7 Isotropic running cost (given by Equation (30)), showing level sets and a
representation of a subset of the optimal controls. The target location is
xT = (1, 1) and the {0.1, 0.2, . . . , 1.2} level sets are displayed. 29

8 Anisotropic running cost (given by Equation (31)), showing level sets and an
optimal path with initial position x = (0.1, 0.1) and target location xT =
(0.5, 0.5). 30

9 Anisotropic running cost (given by Equation (31)), showing level sets gener-
ated by a “contour” function (thick dashed curves) and the level sets gener-
ated using Equation (29) (thin solid curves). The {0.2, 0.4, . . . , 2.0} level sets
are displayed. 31

10 Anisotropic running cost (given by Equation (32)), showing level sets and
an optimal path with initial position x = (−0.3,−0.4) and target location
xT = (0, 0). The {0.05, 0.0973684, . . . , 0.95} level sets are displayed. 32

11 Anisotropic running cost (given by Equation (32)), showing level sets and
a representation of a subset of the optimal controls. The target location is
xT = (0, 0) and the {0.05, 0.0973684, . . . , 0.95} level sets are displayed. 32

12 Anisotropic running cost (given by Equation (32)), showing level sets gener-
ated by OrderedUpwindMethod (dashed curves) and the level sets reproduced
from Figure 5 of Sethian & Vladimirsky [2003] (solid curves); both sets of
contours were generated on a 3852 Cartesian grid. 33

A1 The N(i, j) set shown mapped onto Ωh as large dots for the case of a trian-
gulation based on a Cartesian grid. The x(· , ·) are given by Equation (A1)
and the triangulation diameter h =

√
2δ, where δ is the grid spacing. 39

UNCLASSIFIED ix

DSTO–TR–2815 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

x UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Glossary

DPP Dynamic Programming Principle

HJB Hamilton-Jacobi-Bellman

OUM Ordered Upwind Method(s)

UNCLASSIFIED xi

DSTO–TR–2815 UNCLASSIFIED

Notation

Vectors in real n-dimensional space are denoted by bold symbols, with the exception of
the control α, which can be a scalar or an m-dimensional vector.

Rn real n-dimensional space

x a generic n-dimensional vector, x = (x1, x2, . . . , xn)

‖x‖ magnitude of x, ‖x‖ =
√∑n

i=1 x
2
i

‖x‖∞ infinity-norm, ‖x‖∞ = max {|x1|, |x2|, . . . , |xn|}
x · y scalar (dot) product, x · y =

∑n
i=1 xiyi

∅ empty set

∩ set intersection

∪ set union

\ set difference (relative complement)

⊂ subset

⊆ subset or equal

× Cartesian product

Ω an open domain, Ω ⊆ Rn

t time

s arc length as a parameter

yx path with initial position at x

ẏx derivative of the path (velocity)

f dynamics of the path

f speed of the path

α control

α∗ (approximate) optimal control

J cost functional

tx(α) exit time associated with α and x (earliest time for yx(t,α) to hit the target set)

`x(α) arc length associated with α and x (shortest arc length for yx(s,α) to hit the target set)

R running cost per unit time

R running cost per unit length

g terminal cost

T closed target set where T ⊂ Ω

u value function

inf infimum (greatest lower bound)

xii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

A set of admissible controls

ei ith standard basis vector in Rn

∇ gradient vector differential operator, ∇ =
∑n

i=1 ei ∂∂zi

h triangulation diameter

Xh triangulated mesh of diameter h

xi a mesh point in Xh

Ωh discretisation of Ω

Th discretisation of T
Ω3
h Ωh × Ωh × Ωh

Vxjxk
(x) tentative value function in the simplex xjxxk

V tentative value function

U numerical value function

NF(x) near front set as a function of x ∈ Ωh

NF(i, j) near front set as a function of (i, j) ∈ ΩZ
h

Υ(x) anisotropy function at x

δ Cartesian grid spacing

Z set of integers

(i, j) integer mesh co-ordinate

x(i, j) mesh point in Ωh with integer mesh co-ordinate (i, j)

ΩZ
h set of integer mesh co-ordinates

T Z
h set of integer mesh co-ordinates corresponding to Th

int(S) interior of a set S

xT target location in int(T)

eM
i ith triangulation unit vector

ρh(Ω) computational radius

N(i, j) neighbours of the mesh co-ordinate (i, j)

N(S) neighbours of the set of mesh co-ordinates S, N(S) ⊆ ΩZ
h \ S

N(i, j) neighbourhood of the mesh co-ordinate (i, j), N(i, j) = N(i, j) ∪ {(i, j)}
P (̄i, j̄) set of all adjacent pairs in N (̄i, j̄)

∆(p) discriminant of the polynomial p, see Equation (26)

argmin argument of the minimum of a function

V yz(x, ζ) see Equation (28)

T (i, j) the triplet {(i, j), V (i, j) ,α(i, j)} for (i, j) ∈ Considered

T (i, j) the triplet {(i, j), U(i, j) ,α∗(i, j)} for (i, j) ∈ Accepted

UNCLASSIFIED xiii

DSTO–TR–2815 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

xiv UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

1 Introduction

Path planning is the task of selecting a path through an environment for an entity to
traverse such that a cost is minimised. Path planning has numerous applications, for
example, in robotics, computer game development, and controlling unmanned vehicles.
This report emerged from a study of path planning for military aircraft conducting missions
in hostile environments.

In this report, an entity is considered to follow a path in Euclidean space and incur a
strictly positive running cost at each instant in time. The (total) cost is the integral of
the running cost over the path, and the aim is to steer the entity through its environment
such that this cost is minimised.

If there exists a path through the environment that incurs a lower cost than all other
paths, then this path is globally optimal. Whereas if there exists a path through the
environment that incurs a lower cost than all neighbouring paths (in some sense), then
this path is locally optimal. A globally optimal path is also locally optimal, however a
locally optimal path may not be globally optimal. Indeed, it is possible that a locally
optimal path may represent a poor choice.

If the running cost only depends on the position of the entity, then the running cost
is isotropic. Whereas the running cost is anisotropic if it also depends on the velocity
vector of the entity. Hence for anisotropic path planning problems, the cost depends
on the location of the entity in its environment and how it arrived at that location. In
applications, anisotropic running costs typically stem from heterogeneous environments,
and cases where the orientation of the entity has a significant impact on the cost.

This report details a comprehensive, generic implementation of a numerical method
for approximating all globally optimal paths for anisotropic path planning problems. The
application of this numerical method to the path planning of military aircraft traversing
hostile environments is the subject of a future report.

Obstacle avoidance is a category of path planning where the environment consists of
two distinct regions: one where the entity is free to move at a finite cost, and another
where the entity is forbidden to enter. The literature on obstacle avoidance is vast, par-
ticularly in the fields of robotics and artificial intelligence, and methods to solve obstacle
avoidance problems have been developed to exploit the allowed/forbidden nature of the
environment to enable real-time computations. Since the path planning problem that mo-
tivated this report is not of an obstacle-avoidance type, the obstacle avoidance literature
is not discussed here. For an introduction to obstacle avoidance, refer to the survey article
by Hwang & Ahuja [1992] and the paper by LaValle & Kuffner, Jr. [2001]. Note that the
numerical method that is the subject of this report can be used for obstacle avoidance
problems.

There are many diverse approaches for solving path planning problems. These include
methods from optimal control that are based on Pontryagin’s Minimum Principle [Vian &
Moore 1989], nonlinear programming [Betts 1998, Kabamba, Meerkov & Zeitz III 2006],
and viscosity solutions of Hamilton-Jacobi-Bellman equations [Tsitsiklis 1995, Mitchell &
Sastry 2003, Pêtrès et al. 2007]; the calculus of variations [Pachter & Hebert 2001, Novy,
Jacques & Pachter 2002, Sidhu et al. 2006, Zabarankin, Uryasev & Murphey 2006]; math-

UNCLASSIFIED 1

DSTO–TR–2815 UNCLASSIFIED

ematical programming [Kim & Hespanha 2003, Chaudhry, Misovec & D’Andrea 2004,
Zabarankin, Uryasev & Murphey 2006, Muhandiramge, Boland & Wang 2009]; and heuris-
tics based on Voronoi graphs and nonlinear programming [Dai & Cochran Jr. 2010], non-
linear trajectory generation [Milam, Mushambi & Murray 2000, Inanc et al. 2008], a
system of virtual springs and masses [Bortoff 2000, Mercer & Sidhu 2007, Rowe, Sidhu &
Mercer 2009], using simulation [Beard et al. 2002, McLain & Beard 2005], and evolution-
ary computation [Zheng et al. 2005]. Unfortunately, all of these approaches suffer from at
least one of the following limitations:

• only locally optimal solutions are calculated;

• are heuristic and hence may not be locally optimal;

• are not valid for anisotropic running costs; or

• may not converge to the optimal path as the computational mesh is refined.

The final point primarily arises in graph-based methods, and has profound implications for
the physical interpretation of the solution. For a discussion of this limitation, refer to the
works of Sethian [1999a], Sethian [1999b], and Muhandiramge, Boland & Wang [2009]. A
technique that does not suffer from any of these limitations is the control-theoretic Ordered
Upwind Method [Sethian & Vladimirsky 2001, Vladimirsky 2001, Sethian & Vladimirsky
2003, Alton & Mitchell 2012].

Ordered Upwind Methods (OUM) are a family of numerical methods for approximating
the viscosity solution of static Hamilton-Jacobi-Bellman equations. OUM closely resem-
ble Dijkstra’s seminal shortest-path algorithm for graphs [Dijkstra 1959], and bear scant
resemblance to the usual finite difference methods for partial differential equations. The
focus of this report is on control-theoretic OUM, which are based on a first order upwind
approximation to the Dynamic Programming Principle of optimal control.1

The aim of this report is to document a generic implementation of the control-theoretic
OUM,2 as little detailed information is available in the literature. The OUM is introduced
in Section 2, our implementation can be found in Section 3, and simple path planning
examples have been included in Section 4 to provide the reader with points of comparison.

1.1 Optimal Control

The aspects of optimal control that are most relevant to OUM in a path planning context
are outlined in this section. Refer to Bardi & Capuzzo-Dolcetta [2008, particularly Chapter
IV] for a comprehensive exposition on optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations; Evans [1998] is also an excellent resource.

1Other OUM are based on upwind finite difference discretisations of the Hamilton-Jacobi-Bellman
equation, however a proof of convergence for this approach for anisotropic control problems does not exist
to the author’s knowledge [Sethian & Vladimirsky 2003].

2“Control-theoretic OUM” and “OUM” will be used synonymously for the remainder of this report.

2 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Let Ω ⊆ Rn be an open domain. Initially the entity is at a position x ∈ Ω, then for
each instant in time t > 0 the entity follows the path yx(t) according to the state equation

ẏx(t) = f(yx(t),α(t)) (t > 0),

yx(0) = x,

where ẏx is the velocity, f is the (Lipschitz-continuous) dynamics, and α denotes the
control that steers the entity through its environment (see Section 1.2).

The cost is defined for each x and α to be

J (x,α) =
∫ tx(α)

0
R(yx(t),α(t)) dt+ g(yx(tx(α))).

Here tx (α) is the exit time associated with α and x, which is the earliest time for yx(t,α)
to arrive at the closed target set T ⊂ Ω, R is the running cost per unit time, and g is the
terminal cost.3 Note that tx (α) needs to be determined: it is not an input.

The goal of path planning is to select a control from an admissible set A such that
the cost is minimised. The value function u(x) is defined to be the cost associated with a
globally optimal path with initial position x:

u(x) = inf
α∈A
J (x,α).

The value function satisfies a functional equation referred to as the Dynamic Programming
Principle (DPP):

u(x) = inf
α∈A

{∫ τ

0
R(yx(t),α(t)) dt+ u(yx(τ))

}
(0 < τ 6 tx(α)).

If there exists a differentiable solution u(x) of the DPP, then it can be shown that u(x)
also satisfies a nonlinear first order partial differential equation known as the (static)
Hamilton-Jacobi-Bellman (HJB) equation:{

min
α∈A

{
f(x,α) · ∇u(x) +R(x,α)

}
= 0 in Ω \ T ,

u(x) = g(x) on T .

However, a differentiable solution of the DPP may not exist, and solutions of the HJB
equation are known to be non-unique and possess shock discontinuities.

A viscosity solution is a type of weak solution that has been developed to address these
issues. In particular, viscosity solutions of the HJB equation are unique, continuous, equal
to the differentiable solution at points of differentiability, and equal to the value function.

1.2 Admissible Controls

The control α is considered to be a unit vector for the remainder of this report. In a
path planning context, α is typically the unit velocity of the entity and the dynamics are
expressed as

f(yx(t),α(t)) = f(yx(t),α(t)) α(t) ,
3It is assumed that R is strictly positive, g is positive, and are both Lipschitz-continuous functions.

UNCLASSIFIED 3

DSTO–TR–2815 UNCLASSIFIED

where f > 0 is the speed of the entity and ‖α‖ = 1. The set of admissible controls is then

A =
{
α : R+ ∪ {0} 7→ S1 | α is measurable

}
,

where R+ is the set of positive real numbers, and S1 = {α ∈ Rn | ‖α‖ = 1}.

1.3 Parametrisation

For the remainder of this report, the path is considered to be parametrised by arc length
s, which is more mathematically convenient than parametrisation with respect to time.
When parametrised by s, the state equation simplifies to

ẏx(s) = α(s) (s > 0),

yx(0) = x.
(1)

The DPP becomes

u(x) = inf
α∈A

{∫ τ

0
R(yx(s),α(s)) ds+ u(yx(τ))

}
(0 < τ 6 `x(α)), (DPP)

where R(yx(s),α(s)) = R(yx(s),α(s)) /f(yx(s),α(s)) is the running cost per unit length,
and `x(α) is the arc length associated with α and x (shortest total arc length for yx(s,α)
to hit the target set). Finally, the HJB equation simplifies to{

min
α∈A
{α · ∇u(x) +R(x,α)} = 0 in Ω \ T ,

u(x) = g(x) on T .
(HJB)

1.4 Isotropic Running Costs

If R(x,α) = R(x) then the running cost is isotropic, and the optimal control α∗ is the
direction of steepest descent of u, given by

α∗(x) = − ∇u(x)
‖∇u(x)‖

. (2)

Equivalently, α∗(x) is orthogonal to the level sets (iso-cost contours) of u(x), if u(x) is
differentiable at x. Equation (2) decouples the tasks of computing the optimal control and
the value function, and results in the HJB equation simplifying to

‖∇u(x)‖ = R(x). (3)

Equation (3) is known as the Eikonal equation and has numerous applications, for exam-
ple, in path planning, computational geometry, computer vision, and image enhancement
[Sethian 1999b].

Numerical methods for solving the Eikonal equation include Tsitsiklis’ control-theoretic
algorithm [Tsitsiklis 1995], Fast Marching Methods [Sethian 1999a, Sethian 1999b, Cristiani
2009], and Fast Sweeping Methods [Tsai et al. 2003, Kao, Osher & Tsai 2005, Qian, Zhang
& Zhao 2007a, Qian, Zhang & Zhao 2007b]. While these numerical methods can be ap-
plied to anisotropic path planning problems for some special cases, their application to
general anisotropic path planning problems is either not valid or impractical [Sethian &
Vladimirsky 2003, Alton & Mitchell 2012].

4 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

2 Ordered Upwind Method

OUM compute the numerical value function U by processing subsets of the computational
mesh. These include three disjoint sets: where U is known; where a tentative value for
U has been computed using an approximation to the DPP; and where no information
regarding U is known. The OUM algorithm iteratively updates these (and other) sets
until U has been computed for all points in the computational mesh.

This section introduces OUM by presenting a summary of Section 6 from Sethian &
Vladimirsky [2003], where minimum time optimal control problems are considered.4

2.1 Computational Mesh

To simplify the discussion let Ω ⊂ R2, noting that OUM are valid in Rn. Let Xh ⊂ R2

be an unstructured triangulated mesh of diameter h, where h is the maximum distance
between any two adjacent mesh points, then adjacent mesh points xj and xk in Xh satisfy
‖xj − xk‖ 6 h. Define Ωh = Ω ∩Xh and Th = T ∩Xh to be discretisations of Ω and T ,
respectively. Since T ⊂ Ω the computational mesh is given by Ωh.

2.2 Upwinding Approximation to the DPP

Let xjxxk be a simplex with xj ,x,xk ∈ Ωh, such that xj , xk are adjacent and U(xj), U(xk)
are known from previous iterations of the OUM. At the heart of OUM is the following
first order upwind approximation of the DPP in xjxxk:

Vxjxk
(x) = min

ζ∈[0,1]
{τ(ζ)R(x,αζ) + ζU(xj) + (1− ζ)U(xk)}, (4)

where Vxjxk
(x) is the tentative value function in xjxxk, τ(ζ) = ‖ζxj + (1− ζ)xk − x‖,

and the control is given by

αζ =
ζxj + (1− ζ)xk − x

τ(ζ)
.

Equation (4) can be motivated by observing that as h → 0, the optimal path at x
and within xjxxk approaches a straight line that will intersect the line segment xjxk at
a point x̃ = ζxj + (1− ζ)xk for ζ ∈ [0, 1]. The value function at x̃ is approximated using
linear interpolation:

u(x̃) ≈ ζu(xj) + (1− ζ)u(xk).

Furthermore, as h→ 0 the running cost approaches a constant in xjxxk. Applying these
approximations to the DPP leads to Equation (4).

The tentative value function V (x) is defined to be the minimum of Vxjxk
(x) over a

set of simplices obtained by varying xj and xk; both V (x) and the set of simplices are
updated at each iteration of the OUM. When V (x) becomes the minimum tentative value
function during the iterations of the OUM, then the final value of U(x) is identified with
V (x).

4The equivalence of minimum cost and minimum time optimal control problems is established in
Vladimirsky [2001, Section 2.2.5].

UNCLASSIFIED 5

DSTO–TR–2815 UNCLASSIFIED

CC

AC C C C

AC A AA A CA
AC A AA C C

AAA A A A CAC

Figure 1: An illustration of the Accepted (A), AcceptedFront (A), Considered (C) and
Far (dots) sets. The line segments of the AF set are indicated by lines with arrowheads.

2.3 OUM Sets

Like Dijkstra’s shortest-path algorithm for graphs, the mesh points in Ωh are partitioned
into three sets that are updated at each iteration of the OUM:

Far: no information regarding U is known;

Accepted: U has been computed; and

Considered: adjacent to Accepted and tentative values, V , for U have been computed.

OUM also update the following sets at each iteration:

AcceptedFront: Accepted mesh points that are adjacent to some Considered points; and

AF: set of line segments xjxk, where xj and xk are adjacent mesh points in the Accept-
edFront such that there exists a Considered point adjacent to both xj and xk.

The AF set may be viewed as the set of line segments that constitute the boundary of
the accepted region. An illustration of the Accepted, AcceptedFront, AF, Considered and
Far sets is shown in Figure 1.

Finally, the near front set NF(x) is updated for each x ∈ Considered at each iteration
of the OUM, and is defined to be

NF(x) = {xjxk ∈ AF | there exists a x̃ on xjxk such that ‖x̃− x‖ 6 hΥ(x)}, (5)

where Υ(x) is known as the anisotropy function, which is a local measure of anisotropy in
the running cost:5

Υ(x) =
maxα∈AR(x,α)
minα∈AR(x,α)

. (6)

The NF(x) set is the part of AF that is relevant to x, that is, NF(x) contains those line
segments from which simplices are constructed with each x ∈ Considered, at which the
tentative value function V (x) is updated using Equation (4) at each iteration of the OUM.

5For isotropic running costs Υ(x) = 1.

6 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

a level set of

target set

Figure 2: Definition diagram for illuminating the origins of the NF(x) set.

The remainder of this section is dedicated to illuminating the origins of the NF(x) set:
NF(x) is crucial to the efficient computation of the numerical value function for anisotropic
path planning problems.

Recall that for isotropic path planning problems, the optimal control α∗ and −∇u are
parallel (see Section 1.4), which is exploited to optimise the computational performance of
numerical methods for the isotropic case. Whereas in the anisotropic case, α∗ and −∇u
are not necessarily parallel. This is the principal challenge for designing efficient numerical
methods for anisotropic path planning problems: unlike in the isotropic case, to compute
an optimal path at x, it may be necessary to use mesh points that are not neighbours of
x.

A significant contribution of Sethian & Vladimirsky [2003] is the determination of a
bound on the angle between α∗ and −∇u. This bound motivates the definition of the
NF(x) set, and facilitates the efficient computation of the numerical value function by
reducing the size of the computational stencil at x.6

To derive an expression for the angle between α∗ and −∇u, consider a point x on a
level set of u where ∇u exists, with x at a distance greater than h > 0 from the target
set. Imagine a line drawn parallel to, and at a distance of h from, the tangent line to the
level set at x. If h is sufficiently small, then the optimal path at x can be approximated
by a straight line that passes through x̃, as shown in Figure 2. The angle between α∗ and
−∇u satisfies

cos θ =
h

‖x̃− x‖
, (7)

as indicated in Figure 2.

It remains to eliminate θ from Equation (7). Following Vladimirsky [2001] and Sethian
& Vladimirsky [2003], let R1(x) = minα∈AR(x,α) and R2(x) = maxα∈AR(x,α), and re-
call that R(x,α) > 0. It follows from the HJB equation that α∗ ·∇u < 0 and consequently

α∗ · ∇u
R(x,α∗)

>
α∗ · ∇u
R1(x)

. (8)

6The computational stencil at x is the set of mesh points required to compute the numerical solution
at x. The NF(x) set defines the computational stencil at x for OUM.

UNCLASSIFIED 7

DSTO–TR–2815 UNCLASSIFIED

Also, for all α ∈ A,
α∗ · ∇u
R(x,α∗)

6
α · ∇u
R(x,α)

, (9)

since u satisfies the HJB equation and α∗ is an optimal control. Choosing α = −∇u/‖∇u‖
in Equation (9) leads to

α∗ · ∇u
R(x,α∗)

6 − ‖∇u‖
R2(x)

. (10)

Combining Equations (8) and (10) results in

α∗ · (−∇u) >
‖∇u‖
Υ(x)

,

where Υ(x) is given by Equation (6). By definition, α∗ ·(−∇u) = ‖∇u‖ cos θ and therefore

cos θ >
1

Υ(x)
. (11)

Equation (11) is the bound on the angle between α∗ and −∇u reported in Vladimirsky
[2001] and Sethian & Vladimirsky [2003]. Finally, Equations (7) and (11) yield

‖x̃− x‖ 6 hΥ(x). (12)

Now let x ∈ Considered. Returning to the upwinding approximation to the DPP (refer
to Section 2.2), it can be seen from Equation (4) and Figure 1 that for Vxjxk

(x) to be
well-defined, xjxk ∈ AF. Hence a candidate definition for the tentative value function
V (x) is

V (x) = min
xjxk∈AF

Vxjxk
(x). (13)

Indeed, an algorithm can be developed to compute U based on Equation (13) such that
U → u as h → 0 [Sethian & Vladimirsky 2003]; however, this algorithm will not be
computationally efficient. Instead, if x̃ = ζxj + (1− ζ)xk for ζ ∈ [0, 1], then Equation (12)
can be employed to reduce the number of elements in AF that are required to evaluate
V (x), that is,

V (x) = min
xjxk∈NF(x)

Vxjxk
(x), (14)

which follows from Equation (5). OUM use this definition of V to compute U .

Note that the aforementioned arguments only illuminate the definition of NF(x); in
particular, these arguments fail at points where ∇u does not exist. The proof that Equa-
tions (13) and (14) result in the same value for U appears in Sethian & Vladimirsky
[2003].

8 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

2.4 The OUM Algorithm

The implementation of the OUM algorithm that is the subject of this report appears in
Section 3.4 as Algorithm 8. The OUM algorithm from Sethian & Vladimirsky [2003] is
reproduced here to serve as an introduction and to enable a comparison with Algorithm 8:

1. Start with all the mesh points in Far.

2. Move the mesh points in the target set x ∈ Th to Accepted (U(x) = g(x)).

3. Move all the mesh points x adjacent to the target set into Considered and evaluate
the tentative values

V (x) := min
xjxk∈NF(x)

Vxjxk
(x). (15)

4. Find the mesh point x̄ with the smallest value of V among all the Considered.

5. Move x̄ to Accepted (U(x̄) = V (x̄)) and update the AcceptedFront.

6. Move the Far mesh points adjacent to x̄ into Considered and compute their tentative
values by Equation (15).

7. Recompute the value for all the other Considered x such that x̄xi ∈ NF(x)

V (x) := min
{
V (x) , min

x̄xi∈NF(x)
Vx̄xi(x)

}
. (16)

8. If Considered is not empty, then go to 4.

The OUM algorithm

• has a computational complexity of O(ΥM log(M)) as h→ 0;

• computes the numerical solution U that converges to u as h→ 0;

• is at most first-order accurate; and

• is valid for anisotropic path planning problems.

Here M is the number of mesh points in Ωh and Υ = maxx∈Ω Υ(x). This estimate of the
computational complexity counts the calculation of Vxixj (x) via Equation (4) as a single
operation, since this is performed independently of the other mesh points in Ωh.

Note that Dijkstra’s algorithm has a computational complexity of O(M log(M)). How-
ever, unlike Dijkstra’s algorithm, and Sethian’s Fast Marching Method [Sethian 1999a,
Sethian 1999b] and Tsitsiklis’ algorithm [Tsitsiklis 1995], the OUM algorithm does not
add mesh points to the Accepted set in the order of increasing U .

UNCLASSIFIED 9

DSTO–TR–2815 UNCLASSIFIED

3 Implementation

This section details a generic implementation of the OUM that has the following charac-
teristics:

• Ωh is constructed from a uniform mesh of equilateral triangles on R2; and

• U and V are stored as functions of the integer mesh co-ordinates to allow consistent
and efficient data retrieval.7

The requirements to use a non-uniform mesh are typically driven by features of a
particular application, such as the geometry of the domain and the form of the running
cost, or by the need to improve computational performance. Generating a non-uniform
mesh requires a refinement condition, a refinement algorithm, and data structures for
efficient storage and retrieval of geometric and topological properties of the mesh. For
OUM, at least the position and adjacency of the mesh points must be stored.

A uniform mesh is considered in this report to simplify the discussion, avoid application
specific issues, and to demonstrate a concrete implementation of the OUM. A uniform
mesh of equilateral triangles was chosen because the distance between adjacent mesh
points is equal in all directions. Whereas for a triangulated mesh constructed from a
Cartesian grid with spacing δ, the triangulation diameter is increased to

√
2δ and hence

the numerical accuracy is reduced. However, a triangulation based on a Cartesian grid
is easier to implement and generalise to higher dimensions, and many of the standard
approaches for visualising the optimal paths and level sets are based on Cartesian grids.
Hence an implementation of the mesh-dependent functions for this case has been included
in Appendix A.

For more information on mesh construction, including mesh refinement and construc-
tion in higher dimensions, refer to Cline & Renka [1984], Bänsch [1991], Bey [1995],
Maubach [1995], Ruppert [1995], Arnold, Mukherjee & Pouly [2000], Shewchuk [2002]
and Hjelle & Dæhlen [2006].

Define the set of integer mesh co-ordinates ΩZ
h to be

ΩZ
h =

{
(i, j) ∈ Z2 | x(i, j) ∈ Ωh

}
,

where x(i, j) is a mesh point with integer mesh co-ordinate (i, j). Since U and V are
stored as functions of ΩZ

h , for the remainder of this report, the OUM sets introduced in
Section 2.3 are considered to be subsets of ΩZ

h (or constructed from elements of ΩZ
h), and

hence the OUM algorithm will process these subsets to compute U .

3.1 Mesh Functions

Functions that depend on the structure of the triangulation are presented in this section.
This comprises functions for transforming between mesh points x(i, j) ∈ Ωh and mesh co-

7For example, U and V could be stored in an array, with the integer mesh co-ordinates corresponding
to indices of the array. Alternatively, some mathematical software packages allow functions to be defined
for each discrete point in their domain; in which case, these functions effectively behave like arrays with
arbitrary indices.

10 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

ordinates (i, j) ∈ ΩZ
h , for mesh construction, and functions that return mesh co-ordinates

corresponding to the neighbours of given mesh points.

3.1.1 Mesh Transformations

The mesh point x(i, j) ∈ Ωh indexed by the mesh co-ordinate (i, j) ∈ ΩZ
h is given by8

x(i, j) = xT + h
(
ieM

1 + jeM
2

)
, (17)

where xT ∈ int(T) is the target location and

eM
1 = (1, 0), eM

2 =
1
2

(1,
√

3), (18)

are the triangulation unit vectors. Observe that eM
1 · eM

2 = 1/2.

The mesh co-ordinate (i, j) ∈ ΩZ
h which results in a mesh point x(i, j) ∈ Ωh that is

nearest to a given point y ∈ Ω (not necessarily a mesh point) is obtained from9

i =
[

1
h

(y − xT) · e1 −
1
2
j

]
,

j =
[

2√
3

1
h

(y − xT) · e2

]
.

(19)

Here [·] represents rounding to the nearest integer, and ei is the ith standard basis vector
in R2.

Equations (17) to (19) enable transformations between subsets of ΩZ
h and subsets of Ω

to be defined. Let MeshPoint take as inputs h, xT and mesh co-ordinates, and return the
corresponding mesh points, and let NearestIndex take as inputs h, xT and points in Ω,
and return the corresponding (nearest) mesh co-ordinates, that is:

MeshPoint : R0,1 × int(T)× ΩZ
h −→ Ωh,

NearestIndex : R0,1 × int(T)× Ω −→ ΩZ
h ,

where R0,1 = {x ∈ R | 0 < x < 1}. In particular, if SZ
h ⊆ ΩZ

h and

MeshPoint
(
h,xT ,SZ

h

)
= Sh,

where Sh ⊆ Ωh, then
NearestIndex(h,xT ,Sh) = SZ

h .

However, if S ⊆ Ω, then in general

MeshPoint(h,xT , NearestIndex(h,xT ,S)) 6= S,

as S may contain elements that are not mesh points.
8The dependence of x(i, j) on the target location and the triangulation diameter is suppressed for

notational simplicity.
9It can be shown that ‖y − x(i, j)‖ is minimised for all the combinations of rounding i and j up and

down to the nearest integer, if (i, j) is given by Equation (19).

UNCLASSIFIED 11

DSTO–TR–2815 UNCLASSIFIED

Algorithm 1: Construct ΩZ
h where Ω is a unit square centred at xc.

Input: ρh(Ω), h, xT and xc such that ‖xT − xc‖∞ 6 0.5
Output: ΩZ

h

1 ΩZ
h ← ∅

2 foreach (i, j) ∈ Z2 such that |i| 6 ρh(Ω) and |j| 6 ρh(Ω) do
3 if ‖MeshPoint(h,xT , (i, j))− xc‖∞ 6 0.5 then
4 ΩZ

h ← ΩZ
h ∪ {(i, j)}

3.1.2 Mesh Construction

Mesh construction strongly depends on the geometry of Ω and T , even for a uniform
mesh, and a general discussion of this topic is beyond the scope of this report. Instead, a
construction where Ω is a unit square is presented here as an example.

Recall that the OUM algorithm processes subsets of ΩZ
h to compute U . To construct ΩZ

h

it is necessary to determine the magnitudes of i and j such that Xh covers Ω. To this end,
let r be the largest distance between any two elements of Ω. Setting y−xT = r(cos θ, sin θ)
in Equation (19) leads to

|i| 6
⌈

2√
3
r

h

⌉
and |j| 6

⌈
2√
3
r

h

⌉
,

where d·e represents rounding up to the nearest integer. Therefore, define the computa-
tional radius ρh(Ω) to be

ρh(Ω) =
⌈

2√
3
r(Ω)
h

⌉
.

A construction where Ω is a unit square centred at xc is presented in Algorithm 1; in
this case r(Ω) =

√
2. Observe that Algorithm 1 can be used to construct ΩZ

h when Ω is a
circle of radius 1/2 centred at xc by setting r(Ω) = 1 and replacing ‖ · ‖∞ with ‖ · ‖.

3.1.3 Neighbourhood Functions

The notion of adjacency is central to the OUM algorithm, and therefore a function that
returns the neighbours of a set is required. To begin, the neighbours of the mesh co-
ordinate (i, j) are given by10

N(i, j) = {(i+ 1, j), (i, j + 1), (i− 1, j + 1), (i− 1, j), (i, j − 1), (i+ 1, j − 1)}, (20)

noting that (i, j) 6∈ N(i, j). The N(i, j) set is shown in Figure 3 mapped onto Ωh. Ob-
serve that the elements of N(i, j) are arranged anticlockwise when mapped onto Ωh. The
neighbourhood of (i, j) is given by

N(i, j) = {(i, j), (i+ 1, j), (i, j + 1), (i− 1, j + 1), (i− 1, j), (i, j − 1), (i+ 1, j − 1)},
10If (i, j) is on the boundary of ΩZ

h then some elements of N(i, j) will not belong to ΩZ
h. This does not

cause any difficulties since N(i, j) is always intersected with a subset of ΩZ
h in this report.

12 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Figure 3: The N(i, j) set shown mapped onto Ωh as large dots, where the x(· , ·) are
given by Equation (17).

that is, N(i, j) = N(i, j) ∪ {(i, j)}.

The definition of N(i, j) can be generalised to encompass sets by defining N(SZ
h) to be

N(SZ
h) =

⋃
(i,j)∈SZ

h

N(i, j) \ SZ
h , (21)

for SZ
h ⊂ ΩZ

h . In this report, N(SZ
h) is constructed using

N(SZ
h) =

⋃
(i,j)∈SZ

h

N(i, j).

This results in N(SZ
h) containing elements of SZ

h , which is inconsistent with the definition
provided by Equation (21). However this does not cause any problems, because if SZ

h is a
singleton set then the correct result is obtained, otherwise N(SZ

h) will always be intersected
with a set that is disjoint to SZ

h in this report.

3.2 Set Construction

This section is devoted to the construction of the OUM sets, which were introduced in
Section 2.3.

3.2.1 Adjacency Function

To reiterate, the notion of adjacency is central to the OUM algorithm. A mesh co-ordinate
(i, j) is defined to be adjacent to a set BZ

h ⊂ ΩZ
h if (i, j) ∈ N(BZ

h), where N(·) is given by
Equation (21). The adjacency function AdjacentTo(AZ

h , B
Z
h) is then defined to be the set

of mesh co-ordinates in AZ
h ⊂ ΩZ

h that are adjacent to the mesh co-ordinates in BZ
h :

AdjacentTo(AZ
h , B

Z
h) = AZ

h ∩N(BZ
h). (22)

The AdjacentTo function is required to construct most of the OUM sets.

UNCLASSIFIED 13

DSTO–TR–2815 UNCLASSIFIED

Algorithm 2: AFAdjacentPairs

Input: AcceptedFront and Considered
Output: AF

1 AF← ∅
2 if Considered 6= ∅ then
3 S ← AcceptedFront
4 while S 6= ∅ do
5 select (i, j) ∈ S
6 S ← S \ {(i, j)}
7 A← AdjacentTo(S, {(i, j)})
8 Nij ← Considered ∩N(i, j)
9 foreach (k, l) ∈ A do

10 if Nij ∩N(k, l) 6= ∅ then
11 AF← AF ∪ {{(i, j), (k, l)}}

3.2.2 AcceptedFront Construction

By definition, the AcceptedFront can be constructed using

AcceptedFront = AdjacentTo(Accepted,Considered). (23)

However this is computationally inefficient, since changes to the AcceptedFront between
iterations of the OUM algorithm only occur within a neighbourhood of the most recently
accepted mesh co-ordinate (̄i, j̄). Consequently, after the AcceptedFront has been ini-
tialised on the mesh co-ordinates in the target set, it is then updated according to

AcceptedFront←
(
AcceptedFront \N (̄i, j̄)

)
∪

AdjacentTo(Accepted ∩N (̄i, j̄),Considered).
(24)

Equation (24) is verified in Appendix B.

The update rule given by Equation (24) adds new elements to the AcceptedFront by
calling AdjacentTo to operate on Accepted∩N (̄i, j̄), which has (at most) seven elements.
Compare this with Equation (23), where the AcceptedFront is constructed from the entire
Accepted set, which may have tens of thousands of elements.11

3.2.3 AF Construction

Recall from Section 2.3 that the AF set is given, in terms of mesh co-ordinates, by

AF =
{
{(i, j), (k, l)} ∈ AcceptedFront×AcceptedFront |
‖x(i, j)− x(k, l)‖ = h and Considered ∩N(i, j) ∩N(k, l) 6= ∅

}
.

11The Accepted set grows by one element per iteration of the OUM algorithm until Accepted = ΩZ
h.

14 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Algorithm 3: AFUpdate

Input: AF, AcceptedFront, Considered, and N (̄i, j̄), where (̄i, j̄) is the most
recently accepted mesh co-ordinate

Output: updated AF

1 P (̄i, j̄)← ∅
2 foreach (i, j) ∈ N (̄i, j̄) do
3 A← AdjacentTo(N (̄i, j̄), {(i, j)})
4 foreach (k, l) ∈ A do
5 P (̄i, j̄)← P (̄i, j̄) ∪ {{(i, j), (k, l)}}

6 AF← (AF \ P (̄i, j̄)) ∪ AFAdjacentPairs(AcceptedFront ∩N (̄i, j̄),Considered)

Two functions are employed to construct AF: AFAdjacentPairs constructs the entire AF,
and AFUpdate updates AF at step 5 of the OUM algorithm; refer to Section 2.4.

AFAdjacentPairs takes the AcceptedFront and Considered sets as inputs and returns
the entire AF, and is defined in Algorithm 2. AFAdjacentPairs produces the AF set with
minimal cardinality, meaning that if {(i, j), (k, l)} ∈ AF then {(k, l), (i, j)} 6∈ AF, which
is permitted since xixj is equivalent to xjxi; this is achieved at line 6 of Algorithm 2.
AFAdjacentPairs can be exclusively used to construct AF. However, the computational
performance of AF construction can be dramatically improved by noting that elements
are only added to (or removed from) the AcceptedFront from a neighbourhood of the most
recently accepted mesh co-ordinate (̄i, j̄).

This is exploited in the definition of AFUpdate, which updates AF at step 5 of the
OUM algorithm, and is presented in Algorithm 3. The purpose of lines 2–5 of Algorithm 3
is to construct the set P (̄i, j̄), which consists of all adjacent pairs of mesh co-ordinates
with elements in N (̄i, j̄), including elements that no longer belong to AF. P (̄i, j̄) is given
by12

P (̄i, j̄) =
{
{(i, j), (k, l)} ∈ N (̄i, j̄)×N (̄i, j̄) | ‖x(i, j)− x(k, l)‖ = h

}
.

AFUpdate adds new elements to AF by calling AFAdjacentPairs to operate on the set
AcceptedFront∩N (̄i, j̄), which has (at most) seven elements, whereas AcceptedFront may
have thousands of elements at each iteration of the OUM algorithm. The validity of
AFUpdate can be established by comparing line 6 of Algorithm 3 to the AcceptedFront
update rule given by Equation (24).

3.2.4 NF(i, j) Construction

At step 7 of the OUM algorithm in Section 2.4, the tentative value function is recomputed
for each (i, j) ∈ Considered such that {(̄i, j̄), · } ∈ NF(i, j),13 where (̄i, j̄) ∈ Accepted is
the most recently accepted mesh co-ordinate. Recall from Equation (5) that, in terms of

12Note that if {(i, j), (k, l)} ∈ P (̄i, j̄) then {(k, l), (i, j)} ∈ P (̄i, j̄).
13For greater clarity, this should read {(̄i, j̄), · } ∈ NF(i, j) or { · , (̄i, j̄)} ∈ NF(i, j).

UNCLASSIFIED 15

DSTO–TR–2815 UNCLASSIFIED

Algorithm 4: AFSubset

Input: AF, and (̄i, j̄) corresponding to x̄ in Section 2.4
Output: subset of AF containing { · , (̄i, j̄)} or {(̄i, j̄), · }

1 S ← ∅
2 N ← N (̄i, j̄)
3 foreach (k, l) ∈ N do
4 S ← S ∪ {{(k, l), (̄i, j̄)} , {(̄i, j̄), (k, l)}}
5 AF ∩ S

mesh co-ordinates, the near front NF(i, j) is defined to be

NF(i, j) =
{
{(k, l), (m,n)} ∈ AF |

there exists a x̃ on x(k, l) x(m,n) such that ‖x̃− x(i, j)‖ 6 hΥ(x(i, j))
}
.

(25)

The near front is constructed once per element of the Considered set, which may
contain thousands of elements, for each iteration of the OUM algorithm. Therefore im-
proving the efficiency of near front construction will greatly improve the overall com-
putational performance of the OUM algorithm. To this end, at step 7, instead of con-
structing NF(i, j) from the entire AF and then extracting the subset of NF(i, j) such that
{(̄i, j̄), · } ∈ NF(i, j), it is more efficient to construct NF(i, j) from the subset of AF that
contains (̄i, j̄) in one of its mesh co-ordinate pairs. The AFSubset function takes as inputs
AF and (̄i, j̄), and returns the subset of AF containing { · , (̄i, j̄)} or {(̄i, j̄), · }; see Algo-
rithm 4. Although AF will only contain { · , (̄i, j̄)} or {(̄i, j̄), · }, it is not possible to know
which one in advance; this is taken into account on line 4 of Algorithm 4.

Now all that remains is to derive a function to apply the conditions in Equation (25)
to determine which elements of AF also belong to NF(i, j). To begin, let the quadratic
polynomial p(ζ) be defined by

p(ζ) = ‖ζx(k, l) + (1− ζ)x(m,n)− x(i, j)‖2 − (hΥ(x(i, j)))2, (26)

for (i, j) ∈ Considered and {(k, l), (m,n)} ∈ AF, where the line segment x(k, l) x(m,n) is
given by ζx(k, l) + (1− ζ)x(m,n) for ζ ∈ [0, 1]. Therefore, if there exists a ζ ∈ [0, 1] such
that

p(ζ) 6 0, (27)

then {(k, l), (m,n)} ∈ NF(i, j).

Let ∆(p) be the discriminant of p(ζ). The following statements are properties of p(ζ):

• p′′ = 2h2 > 0, and hence p(ζ) is a convex function.

• If ∆(p) < 0, then p(ζ) > 0 for all ζ, and hence Equation (27) is not satisfied.

• If ∆(p) > 0, then p(argmin(p(ζ))) 6 0. Therefore if argmin(p(ζ)) ∈ [0, 1], then
Equation (27) is satisfied.

16 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Algorithm 5: NearFrontTest

Input: h, {(k, l), (m,n)} ∈ AF, (i, j) ∈ Considered, and Υ(x(i, j))
Output: True if {(k, l), (m,n)} ∈ NF(i, j), otherwise False

1 C1 ← m− i
2 C2 ← n− j
3 C3 ← k −m
4 C4 ← l − n
5 argmin(p(ζ))← −1

2(2C1C3 + C1C4 + C2C3 + 2C2C4)
6 p′′ ← 2h2

7 p′(0)← −p′′argmin(p(ζ))

8 p(0)← 1
8

(
3p′′C2

2 + p′′ (2C1 + C2)2 − 8 (hΥ(x(i, j)))2
)

9 p(1)← 1
2p
′′ + p′(0) + p(0)

10 ∆(p)← (p′(0))2 − 2p′′p(0)

11 if ∆(p) < 0 then
12 return False
13 else if p(0) 6 0 or p(1) 6 0 then
14 return True
15 else if 0 6 argmin(p(ζ)) 6 1 then
16 return True
17 else
18 return False

• If ∆(p) > 0, argmin(p(ζ)) < 0 and p(0) > 0, then p(ζ) > 0 for ζ ∈ [0, 1] and
Equation (27) is not satisfied.

• If ∆(p) > 0, argmin(p(ζ)) > 1 and p(1) > 0, then p(ζ) > 0 for ζ ∈ [0, 1] and
Equation (27) is not satisfied.

Also, since p(ζ) is a quadratic polynomial,

∆(p) =
(
p′(0)

)2 − 2p′′p(0),

argmin(p(ζ)) = −p
′(0)
p′′

,

p(1) =
1
2
p′′ + p′(0) + p(0).

Finally, using Equations (17) and (18) and the definition of p(ζ) leads to

p(0) = h2
(
(m− i)2 + (n− j)2 + (m− i)(n− j)

)
− (hΥ(x(i, j)))2,

p′(0) = 2h2

(
(m− i)(k −m) +

1
2

(m− i)(l − n) +
1
2

(n− j)(k −m) + (n− j)(l − n)
)
.

UNCLASSIFIED 17

DSTO–TR–2815 UNCLASSIFIED

Algorithm 6: NearFront

Input: h, xT , AF, and (i, j) ∈ Considered
Output: NF(i, j)

1 NF(i, j)← ∅
2 C ← Υ(MeshPoint(h,xT , (i, j)))
3 foreach {(k, l), (m,n)} ∈ AF do
4 if NearFrontTest(h, {(k, l), (m,n)}, (i, j), C) then
5 NF(i, j)← NF(i, j) ∪ {{(k, l), (m,n)}}

These properties of p(ζ) are incorporated into the definition of NearFrontTest, which
returns “True” if an element of AF is also an element of NF(i, j), or otherwise returns
“False”; see Algorithm 5.14 NearFrontTest is a major contributor to the total run-time
of the OUM algorithm, due to the number of calls to NearFrontTest. Therefore even
small improvements to the efficiency of NearFrontTest may result in large improvements
to the computational performance of the OUM algorithm.

NF(i, j) can now be constructed by calling NearFrontTest. This is performed by the
NearFront function, which is defined in Algorithm 6.

3.3 Tentative Value Function

This section concerns the evaluation of the tentative value function V in Equation (15)
of the OUM algorithm presented in Section 2.4. To evaluate the tentative value function,
two minimisations are performed: locally within each simplex constructed from the near
front, and then the minimum of these values is selected.

3.3.1 Local Minimisation

To evaluate V , it is first necessary to determine Vxjxk
(x) by performing the function

minimisation in Equation (4). This local minimisation is performed using an algorithm
that emulates the Golden Section Search routine from Press et al. [1992].

The Golden Section Search algorithm’s inputs include a numerical precision and an
initial bracket for the minimising abscissa. The numerical precision of this algorithm is
set to h in our implementation. This incurs an O(h2) numerical error in Vxjxk

(x), which
is acceptable as OUM are at most first-order accurate.15

The routine for initially bracketing a minimum presented in Press et al. [1992] is for
functions defined on an unbounded interval, which is not the case here. This bracket-
ing routine has been modified to restrict the domain to [0, 1] in our implementation of

14As x(i, j) and x(m, n) are not necessarily adjacent (see Section 2.2), C1 and C2 in Algorithm 5 may be
large and therefore it is desirable to avoid squaring these terms. Consequently, on line 8 of Algorithm 5,
p(0) is expressed in a form to enable cancellation between C1 and C2 to occur before these terms are
squared.

15This follows from the uniform Lipschitz continuity of U [Sethian & Vladimirsky 2003].

18 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

the OUM.16 As in Press et al. [1992], the resulting bracketing algorithm is somewhat
“formidable”, and hence it is not included in this report. Furthermore, experience sug-
gests that the results produced by the OUM algorithm when using this bracketing algo-
rithm compared with simply providing the Golden Section Search algorithm with an initial
bracket of (0, 0.5, 1), are numerically indistinguishable for the examples considered in this
report. This is not surprising because as h→ 0, the function in the braces in Equation (4)
will approach a straight line within the simplex xjxxk, for sufficiently smooth running
costs. Therefore if h is sufficiently small, then [0, 1] will contain a unique minimum and
(0, 0.5, 1) will be adequate to determine the minimising abscissa. However, the impact of
this bracketing algorithm on the OUM algorithm’s run-time also appears to be negligible
and, for highly oscillatory running costs in particular, it may provide some advantages by
quickly reducing the width of the bracket passed to the Golden Section Search algorithm.

3.3.2 Evaluation

Let V yz(x, ζ) be the function in the braces in Equation (4), namely,

V yz(x, ζ) = τ(ζ)R(x,αζ) + ζU(k, l) + (1− ζ)U(m,n) , (28)

where y = x(k, l), z = x(m,n), τ(ζ) = ‖ζy + (1− ζ)z− x‖, and the control is given by

αζ =
ζy + (1− ζ)z− x

τ(ζ)
.

The notation here is somewhat awkward since U is stored as a function of the mesh co-
ordinates in ΩZ

h , whereas the other functions in Equation (28) depend on the mesh points
in Ωh.

The evaluation of V in Equation (15) is performed by TentativeValueFunction, which
takes as inputs h, xT , NF(i, j) and (i, j) ∈ Considered, and returns {(i, j), V (i, j),α(i, j)};
see Algorithm 7. Note that, in practice, lines 8 and 9 of Algorithm 7 would be performed
in a single operation.

TentativeValueFunction is a major contributor to the total run-time of the OUM
algorithm, due to the number of calls to TentativeValueFunction and the function min-
imisation on line 8 of Algorithm 7. Therefore even small improvements to the efficiency
of TentativeValueFunction have the potential to result in large improvements to the
computational performance of the OUM algorithm.

16Our algorithm uses parabolic extrapolation to attempt to bracket the minimising abscissa, and if this
fails, then the algorithm steps downhill while remaining inside [0, 1] and tries again. If this procedure fails
after three attempts, then the last attempt is returned.

UNCLASSIFIED 19

DSTO–TR–2815 UNCLASSIFIED

Algorithm 7: TentativeValueFunction

Input: h, xT , NF(i, j), and (i, j) ∈ Considered
Output: {(i, j), V (i, j),α(i, j)}

1 if NF(i, j) = ∅ then
2 return {(i, j),∞, · }
3 else
4 x← MeshPoint(h,xT , (i, j))
5 V (i, j)←∞
6 foreach {(k, l), (m,n)} ∈ NF(i, j) do
7 {y, z} ← MeshPoint(h,xT , {(k, l), (m,n)})
8 C ← minζ∈[0,1] V yz(x, ζ)
9 ζ ← argminζ∈[0,1] V yz(x, ζ)

10 if C < V (i, j) then
11 V (i, j)← C
12 α(i, j)← αζ

13 return {(i, j), V (i, j),α(i, j)}

20 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

3.4 The OUM Algorithm Revisited

Before revisiting the OUM algorithm, a number of symbols still require definitions. Let
T Z
h be the set of mesh co-ordinates corresponding to the discretisation of T ,

T Z
h =

{
(i, j) ∈ Z2 | x(i, j) ∈ Th

}
,

noting that T Z
h ⊂ ΩZ

h . Also let T (i, j) be the triplet

T (i, j) = {(i, j), V (i, j),α(i, j)},

for (i, j) ∈ Considered, and

T (i, j) = {(i, j), U(i, j),α∗(i, j)},

for (i, j) ∈ Accepted.

The OUM algorithm that is the subject of this report is presented in Algorithm 8.
The lines that appear as comments in Algorithm 8 correspond to the steps of the OUM
algorithm that was reproduced from Sethian & Vladimirsky [2003] in Section 2.4.

Note that

• the running cost R(· , ·) and anisotropy function Υ(·) are assumed to be strictly
positive Lipschitz-continuous functions; the terminal cost g(·) > 0 is also assumed
to be Lipschitz continuous;

• the dependences of NearFront on Υ(·) and of TentativeValueFunction on R(· , ·)
have been suppressed for notational simplicity;

• ΩZ
h and T Z

h are inputs, and hence must be determined by an algorithm such as
Algorithm 1, or by some other means;

• on line 5, the optimal control is not specified on T Z
h , however it can be specified as

a boundary condition on the velocity of the entity;

• the AcceptedFront is initialised on the Accepted set on line 8;

• the Considered set is required to be sorted according to the values of V to determine
the minimum on line 14; this can be accomplished via a standard sorting algorithm,
such as in Press et al. [1992], or by using a “sort” function included in most mathe-
matical software packages;17

• in practice, the solution set S is exported as a data stream on line 15 and stored in
a file;

• V is initialised on the new mesh co-ordinates in Considered on lines 21 to 25; and

• on lines 26 to 31, TentativeValueFunction is called and V is possibly updated
to account for the changes to the near front that result from accepting (̄i, j̄), and
therefore Z is a tentative value for V .

17Sorting the Considered set contributes the log(M) factor in the computational complexity of the OUM
algorithm [Sethian & Vladimirsky 2003].

UNCLASSIFIED 21

DSTO–TR–2815 UNCLASSIFIED

Algorithm 8: OrderedUpwindMethod

Input: R(· , ·), g(·), Υ(·), h, xT , ΩZ
h , and T Z

h

Output: solution set S with elements T (i, j) = {(i, j), U(i, j),α∗(i, j)} for each
(i, j) ∈ ΩZ

h

1 S ← ∅
// step 1

2 Far← ΩZ
h \ T Z

h

// step 2
3 Accepted← T Z

h

4 foreach (i, j) ∈ Accepted do
5 S ← S ∪ {{(i, j), g(MeshPoint(h,xT , (i, j))), · }}
// step 3

6 Considered← AdjacentTo(Far,Accepted)
7 Far← Far \ Considered
8 AcceptedFront← Accepted
9 AF← AFAdjacentPairs(AcceptedFront,Considered)

10 foreach (i, j) ∈ Considered do
11 NF(i, j)← NearFront(h,xT ,AF, (i, j))
12 T (i, j)← TentativeValueFunction(h,xT ,NF(i, j), (i, j))

13 while Considered 6= ∅ do
// step 4

14 (̄i, j̄)← argmin(i,j)∈Considered V (i, j)
15 S ← S ∪ {T (̄i, j̄)}
16 N ← N (̄i, j̄)

// step 5
17 Accepted← Accepted ∪ {(̄i, j̄)}
18 Considered← Considered \ {(̄i, j̄)}
19 AcceptedFront← (AcceptedFront \N)∪AdjacentTo(Accepted∩N,Considered)
20 AF← AFUpdate(AF,AcceptedFront,Considered, N)

// step 6
21 NewConsidered← AdjacentTo(Far, {(̄i, j̄)})
22 Far← Far \NewConsidered
23 foreach (i, j) ∈ NewConsidered do
24 NF(i, j)← NearFront(h,xT ,AF, (i, j))
25 T (i, j)← TentativeValueFunction(h,xT ,NF(i, j), (i, j))

// step 7

26 AF← AFSubset(AF, (̄i, j̄))
27 foreach (i, j) ∈ Considered do
28 NF(i, j)← NearFront(h,xT ,AF, (i, j))
29 {(i, j), Z,α(i, j)} ← TentativeValueFunction(h,xT ,NF(i, j), (i, j))
30 if Z < V (i, j) then
31 T (i, j)← {(i, j), Z,α(i, j)}

32 Considered← Considered ∪NewConsidered

22 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

3.5 Visualisation

OrderedUpwindMethod (Algorithm 8) returns {(i, j), U(i, j),α∗(i, j)} for each (i, j) ∈ ΩZ
h ,

which is typically stored in a file. This data can then be processed to visualise the solution
and determine other properties. One method for visualising the solution is to reconstruct
the optimal paths starting at given initial positions to the boundary of the target set.
Another visualisation is obtained by generating the level sets of the value function.

3.5.1 Path Reconstruction

Two approaches can be taken to reconstruct the optimal paths from data produced by
OrderedUpwindMethod. Both commence with a given initial position, and require in-
terpolation to form approximations at points in the domain that are not mesh points.
Subsequent points on the optimal path are determined by either

• interpolating the value function data and performing a local minimisation (the value
function is strictly monotone decreasing on an optimal path); or

• interpolating the optimal control data and numerically integrating the state equation
given by Equation (1).

The second approach is taken in this report.

The algorithm used in this report for reconstructing an optimal path starting at a
given initial position x ∈ Ω is as follows:

1. Set the first point on the optimal path yx to be x.

2. Find the vertices of the simplex that contains yx.

3. Approximate the optimal control at yx by interpolating the optimal control data on
the vertices of the simplex that contains yx.

4. Calculate the next point on the optimal path by numerically integrating the state
equation, and set yx to be this point.

5. If yx is not within a step size of the target set, then return to step 2 and continue,
otherwise return the optimal path.

Step 2 of the path reconstruction algorithm is performed by the FindSimplex func-
tion, which is defined in Algorithm 9 and motivated by the definition diagram shown in
Figure 4.18 First, let xc = (xc, yc) ∈ Ωh be the closest mesh point to a given point x ∈ Ω,
and construct the six candidate simplices with adjacent vertices from the neighbours of xc.
Then determine which quadrant of the (xc, yc) co-ordinate system contains x; the number
of candidate simplices will now be two. Finally, the simplex that contains x is determined
by considering the cosine of the angle between x−xc and xi−xc, where i ∈ {1, 4}, noting
that (xi+1 − xc) · (xi − xc) = 0.5 for i ∈ {1, . . . , 5}.

18FindSimplex is a mesh-dependent function, and therefore an implementation of this function for the
case of a triangulated mesh constructed from a Cartesian grid has been included in Appendix A.

UNCLASSIFIED 23

DSTO–TR–2815 UNCLASSIFIED

Figure 4: Definition diagram for the FindSimplex function (Algorithm 9), showing the
neighbours of xc = (xc, yc) ∈ Ωh and an example where the simplex xcx3x4 contains x ∈ Ω.

An approximation to the optimal control at x ∈ Ω is calculated using linear interpola-
tion. First, InterpolationCoefficients19 (see Algorithm 10) determines the barycentric
co-ordinates {ζ1, ζ2, ζ3} ⊂ R3 of x with respect to the vertices {u,v,w} ⊂ Ω3

h of the sim-
plex that contains x, by solving the system

ζ1 + ζ2 + ζ3 = 1,

ζ1u + ζ2v + ζ3w = x.

Then step 3 of the path reconstruction algorithm is performed by InterpolatedControl
(see Algorithm 11), which takes the optimal control data, h, xT and x as inputs, then
calls FindSimplex and InterpolationCoefficients, returning the linearly interpolated
control at x.

Step 4 of the path reconstruction algorithm is performed using Heun’s method to nu-
merically integrate Equation (1). Heun’s method is a second order Runge-Kutta method,
and is often referred to as the improved Euler’s method [Leader 2004].

The path reconstruction algorithm is implemented in Algorithm 12, which defines the
OptimalPath function. OptimalPath takes as inputs the optimal control data, Th, h, xT ,
and the initial position x ∈ Ω. OptimalPath calls InterpolatedControl, numerically
integrates Equation (1) using Heun’s method with a step size of h, and then returns an
ordered list of points on the optimal path with initial position x. Note that

• the distance function dist(· , S) : Ω → R (appearing on line 3 of Algorithm 12) is
defined to be

dist(x, S) = min {‖x− y‖ | y ∈ S},

for a given nonempty finite set S ⊂ Ω;

• a different numerical method for integrating the state equation can be used by mod-
ifying lines 4 to 6 of Algorithm 12; and

19InterpolationCoefficients is a mesh-dependent function, and therefore an implementation of this
function for the case of a triangulated mesh constructed from a Cartesian grid has been included in
Appendix A.

24 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Algorithm 9: FindSimplex

Input: h, xT , and x ∈ Ω where x = (x1, x2)
Output: {u,v,w} ⊂ Ω3

h, where uvw is a simplex with adjacent vertices that
contains x

1 {xc,x1,x2,x3,x4,x5,x6} ← MeshPoint
(
h,xT , N(NearestIndex(h,xT ,x))

)
2 if x2 > yc then
3 if x1 > xc then
4 if (x− xc) · (x1 − xc) > 0.5h‖x− xc‖ then
5 return {xc,x1,x2}
6 else
7 return {xc,x2,x3}

8 else
9 if (x− xc) · (x4 − xc) > 0.5h‖x− xc‖ then

10 return {xc,x3,x4}
11 else
12 return {xc,x2,x3}

13 else
14 if x1 > xc then
15 if (x− xc) · (x1 − xc) > 0.5h‖x− xc‖ then
16 return {xc,x6,x1}
17 else
18 return {xc,x5,x6}

19 else
20 if (x− xc) · (x4 − xc) > 0.5h‖x− xc‖ then
21 return {xc,x4,x5}
22 else
23 return {xc,x5,x6}

• the discretisation of the target set Th can be deduced from the solution data if, for
instance, the terminal cost is constant on the boundary of the target set; if this is
the case then Th is not required as an input.

UNCLASSIFIED 25

DSTO–TR–2815 UNCLASSIFIED

Algorithm 10: InterpolationCoefficients

Input: h, x ∈ Ω, and {u,v,w} ⊂ Ω3
h, where uvw is a simplex with adjacent

vertices that contains x
Output: {ζ1, ζ2, ζ3} ⊂ R3, which are barycentric co-ordinates of x with respect to

{u,v,w} such that ζ1 + ζ2 + ζ3 = 1

1 C ← 2/(3h2)
2 z← x−w
3 C1 ← Cz · (u− v)
4 C2 ← Cz · (u−w)
5 C3 ← Cz · (v −w)
6 {ζ1, ζ2, ζ3} ← {C1 + C2, C3 − C1, 1− C2 − C3}

Algorithm 11: InterpolatedControl

Input: α∗(i, j) for each (i, j) ∈ ΩZ
h , h, xT , and x ∈ Ω

Output: a linearly interpolated control ᾱ at x

1 {u,v,w} ← FindSimplex(h,xT ,x)
2 {(i, j), (k, l), (m,n)} ← NearestIndex(h,xT , {u,v,w})
3 {ζ1, ζ2, ζ3} ← InterpolationCoefficients(h,x, {u,v,w})
4 ᾱ← ζ1α

∗(i, j) + ζ2α
∗(k, l) + ζ3α

∗(m,n)
5 ᾱ← ᾱ/‖ᾱ‖

Algorithm 12: OptimalPath

Input: α∗(i, j) for each (i, j) ∈ ΩZ
h , Th, h, xT , and x ∈ Ω

Output: an ordered list L of points on the optimal path with initial position x,
that is, L = {x, yx(s1), yx(s2), . . . }

1 yx ← x
2 L← {yx}
3 while dist(yx, Th) > h do
4 k1 ← hInterpolatedControl(α∗(· , ·), h, xT , yx)
5 k2 ← hInterpolatedControl(α∗(· , ·), h, xT , yx + k1)
6 yx ← yx + 0.5(k1 + k2)
7 L← L ∪ {yx}

26 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

3.5.2 Level Sets

The level sets of u are defined to be
{
x ∈ R2 | u(x) = C

}
for a given C ∈ R. Level sets can

be visualised using a “contour” function included in most mathematical software packages.
The figures in Section 4 were generated using this approach.

A coarse approximation to the C level set of u can be obtained by monitoring the state
of the AF set during the OUM algorithm [Sethian & Vladimirsky 2003, see Remark 7.4].
Let UAF

min = min(i,j)∈AF U(i, j) and UAF
max = max(i,j)∈AF U(i, j), where AF refers to the

state of the AF set at the nth iteration and (i, j) denotes an element of a pair of adjacent
mesh co-ordinates in AF. If the condition

UAF
min 6 C 6 UAF

max, (29)

is satisfied at the nth iteration of the OUM algorithm, then the corresponding state of AF
represents a coarse approximation to the C level set of u. A comparison of this approach
with the more accurate “contour” function approach is shown in Figure 9 in Section 4.

4 Examples

The primary aim of this section is to employ OrderedUpwindMethod (Algorithm 8) to solve
a number of simple path planning problems, to provide figures with which the reader can
compare output from their implementation of OUM. This section is not intended to be a
demonstration of the utility of OUM for solving real-world problems. Consequently there
will only be a very limited discussion of the origin of the running costs used to generate
the figures.

In addition to providing the reader with examples, images of the two approaches for
visualising level sets that were discussed in Section 3.5.2 are overlaid in Figure 9 for an
anisotropic example. To demonstrate the validity of OrderedUpwindMethod, the level sets
produced by OrderedUpwindMethod for another anisotropic running cost and an image of
the corresponding figure from Sethian & Vladimirsky [2003] are overlaid in Figure 12.

OrderedUpwindMethod was run on a uniform mesh of equilateral triangles on the unit
square with h = 0.00275 (3902 mesh points) to generate the figures in this section; an
exception is Figure 12, which was generated on a Cartesian grid with spacing δ = 0.0026
(h =

√
2δ with 3852 grid points).20 In all figures the terminal cost is given by

g(x) =

{
0, x ∈ ∂T
∞, otherwise,

where ∂T is the boundary of the target set; this ensures that all optimal paths hit the
target set.21 The target set is chosen to be the singleton {xT }, which is approximated by
the neighbours of xT .

20Correspondence with A. Vladimirsky revealed that Figure 5 from Sethian & Vladimirsky [2003] was
generated on a Cartesian grid.

21Theoretically, this terminal cost is required to be mollified. However, in practice, the value function is
simply set to zero on the boundary of the target set.

UNCLASSIFIED 27

DSTO–TR–2815 UNCLASSIFIED

0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Uniform running cost (R = 1), showing level sets and an optimal path with
initial position x = (0.1, 0.1) and target location xT = (1, 1).

4.1 Isotropic Running Costs

The first isotropic example is the trivial case of a uniform running cost, given by R(x) = 1
with anisotropy function Υ(x) = 1. In Figure 5 it can be seen that, as expected, the
value function is simply the distance to the boundary of the target set, the level sets are
concentric circles centred at the target, and the optimal paths are the shortest straight-line
paths from given initial positions to the boundary of the target set.

The second isotropic example is an obstacle avoidance problem taken from Kumar &
Vladimirsky [2010], and is displayed in Figures 6 and 7. The obstacles are three squares
with side length Ls = 0.1, located at s1 = (0.25, 0.5), s2 = (0.5, 0.3) and s3 = (0.65, 0.75).
Let the shortest distance to the obstacles be

O(x) = min {‖x− s1‖∞, ‖x− s2‖∞, ‖x− s3‖∞} .

The running cost is given by22

R(x) =


1

1 + 0.8 sin(4πx1) sin(6πx2)
, O(x) > 0.5Ls

∞, otherwise,
(30)

and the anisotropy function is Υ(x) = 1.

Observe in Figures 5 and 6 that the optimal paths are orthogonal to the levels sets of
the value function, as expected for isotropic running costs.

22This running cost should be mollified to be consistent with the theory that underpins OUM. Alter-
natively, the solution can be interpreted in terms of a discontinuous value function [Bardi & Capuzzo-
Dolcetta 2008].

28 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.8

0.9

0.9

1

1

1

1

1.1 1.11.2 1.2

1.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Isotropic running cost (given by Equation (30)), showing level sets and an
optimal path with initial position x = (0.1, 0.1) and target location xT = (1, 1). The black
squares represent obstacles, which have a side length of 0.1 and are located at (0.25, 0.5),
(0.5, 0.3) and (0.65, 0.75).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Isotropic running cost (given by Equation (30)), showing level sets and a
representation of a subset of the optimal controls. The target location is xT = (1, 1) and
the {0.1, 0.2, . . . , 1.2} level sets are displayed.

UNCLASSIFIED 29

DSTO–TR–2815 UNCLASSIFIED

0.2

0.4
0.6

0.8

1

1

1.2

1.2
1.41.4

1.4

1.6

1.61.6

1.6

1.6

1.6

1.8

1.81.8

1.8

1.8

1.8

2

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.4

Figure 8: Anisotropic running cost (given by Equation (31)), showing level sets and an
optimal path with initial position x = (0.1, 0.1) and target location xT = (0.5, 0.5).

4.2 Anisotropic Running Costs

The first anisotropic example originated as a seismic imaging problem, and can be found
in Sethian & Vladimirsky [2003] and Kumar & Vladimirsky [2010]. The running cost is
given by

R(x,α) = 1.25

√√√√1 +

(√
15

1 + (0.49π cos(4πx1))2
(0.49π cos(4πx1),−1) ·α

)2

, (31)

and the anisotropy function is Υ(x) = 4. The solution to this seismic imaging problem is
visualised in Figure 8.23

Images of the two approaches for visualising level sets that were discussed in Sec-
tion 3.5.2 are overlaid in Figure 9 for this anisotropic example (Equation (31)). Note that
raw AF data (line segments) obtained by applying the condition given by Equation (29)
is shown in Figure 9, together with the level sets generated by a “contour” function. The
excellent visual agreement that can be observed in Figure 9 is primarily due to the rel-
atively fine mesh used to produce the solution data; for a more coarse mesh, differences
between these approaches are more noticeable.

23There are small qualitative differences between Figure 8 and the corresponding figure in Kumar &
Vladimirsky [2010], primarily in the optimal path. Kumar & Vladimirsky adapt OUM to solve constrained
and multiobjective optimal control problems. For unconstrained (and single objective) optimal control
problems their numerical method coincides with OUM in the limit as h → 0. However, for a given mesh
with h away from zero, some differences in the solutions produced using these methods is to be expected.
Furthermore, the corresponding figure in Kumar & Vladimirsky [2010] was generated on a Cartesian grid

30 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Anisotropic running cost (given by Equation (31)), showing level sets gen-
erated by a “contour” function (thick dashed curves) and the level sets generated using
Equation (29) (thin solid curves). The {0.2, 0.4, . . . , 2.0} level sets are displayed.

The final anisotropic example is related to the geodesic distance on a manifold, and
comes from Sethian & Vladimirsky [2003]. The running cost is

R(x,α) =
√

1 + (1.8π (cos(2πx1) sin(2πx2), cos(2πx2) sin(2πx1)) ·α)2, (32)

and the anisotropy function is Υ(x) = 5.75. The solution to this example is visualised in
Figures 10 and 11.

Observe in Figures 8 and 10 that the optimal paths are not necessarily orthogonal to
the levels sets of the value function, as expected for anisotropic running costs.

To demonstrate the validity of OrderedUpwindMethod, the level sets produced by
OrderedUpwindMethod for this anisotropic example (Equation (32)) and an image of the
corresponding figure from Sethian & Vladimirsky [2003] are overlaid in Figure 12, where
excellent visual agreement can be observed.

with 2012 grid points, whereas Figure 8 was generated on a uniform mesh of equilateral triangles with 3902

mesh points.

UNCLASSIFIED 31

DSTO–TR–2815 UNCLASSIFIED

0.4

0.2

0.0

0.2

0.4

0.4 0.2 0.0 0.2 0.4

Figure 10: Anisotropic running cost (given by Equation (32)), showing level sets and an
optimal path with initial position x = (−0.3,−0.4) and target location xT = (0, 0). The
{0.05, 0.0973684, . . . , 0.95} level sets are displayed.

0.4

0.2

0.0

0.2

0.4

0.20.4 0.0 0.2 0.4

Figure 11: Anisotropic running cost (given by Equation (32)), showing level sets and a
representation of a subset of the optimal controls. The target location is xT = (0, 0) and
the {0.05, 0.0973684, . . . , 0.95} level sets are displayed.

32 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Figure 12: Anisotropic running cost (given by Equation (32)), showing level sets gener-
ated by OrderedUpwindMethod (dashed curves) and the level sets reproduced from Figure 5
of Sethian & Vladimirsky [2003] (solid curves); both sets of contours were generated on a
3852 Cartesian grid.

5 Conclusion

There are many diverse numerical methods that can be applied to solving path planning
problems, however most of these are either not valid or impractical for solving anisotropic
path planning problems. Ordered Upwind Methods (OUM) are a family of numerical
methods for approximating the viscosity solution of static Hamilton-Jacobi-Bellman (HJB)
equations, and have been tailored to solve anisotropic optimal control problems. The focus
of this report has been on the control-theoretic OUM.

There is little information in the literature regarding the implementation of OUM,
and a wide range of computational techniques and meticulous algorithmic considerations
are required to successfully implement OUM. A comprehensive, generic implementation of
OUM has been documented in Section 3 of this report, with the intention of minimising
the technical barriers to employing OUM in real-world applications.

The OUM algorithm processes subsets of the computational domain to compute the
numerical value function. The run-time of the OUM algorithm can be significantly reduced
by noting that elements are only added to (or removed from) the AcceptedFront from a
neighbourhood of the most recently accepted mesh co-ordinate. This is exploited in the
AcceptedFront update rule given by Equation (24) and in the definition of the AFUpdate
function (Algorithm 3).

Note that the major contributors to the run-time of the OUM algorithm are near
front construction (refer to Algorithms 5 and 6) and the evaluation of the tentative value

UNCLASSIFIED 33

DSTO–TR–2815 UNCLASSIFIED

function (Algorithm 7). This is caused by the recalculation of the tentative value function
to account for the changes to the near front that result from accepting a mesh co-ordinate
at each iteration of the OUM algorithm; refer to step 7 of Algorithm 8.

If the anisotropy function satisfies Υ(x) � 1/h on a significant subset of the do-
main, then NF(x) ≈ AF and hence the run-time of OUM may considerably increase.
Decreasing the run-time of OUM typically requires solving the HJB equation on a non-
uniform mesh. One such approach entails refining the mesh on subsets of the domain
where Υ(x)� 1/h. This mesh refinement condition, together with the bisection refine-
ment algorithm of Maubach [1995] and the data structures presented in Cline & Renka
[1984], have been implemented by the author and the initial results are promising. Other
methods require two passes through the domain to construct the numerical solution of
the HJB equation. The so-called Patchy Dynamic Programming scheme of Cacace et al.
[2012] requires the HJB equation to be solved initially on a coarse mesh to determine the
subsets of the domain, known as patches, where the solution can be independently com-
puted in the second stage of the scheme. The HJB equation is then solved using a finer
mesh on each patch utilizing parallel computing. Alton & Mitchell [2012] have developed
a variant of the OUM that is optimised for highly non-uniform meshes. For this two-pass
approach, the computational stencil is first computed for each node such that during the
second pass, the HJB equation can be solved using a fast Dijkstra-like method where the
nodes are accepted monotonically.

The aforementioned techniques for decreasing the run-time of OUM when Υ(x)� 1/h
continue to be investigated by the author. Applying OUM to the path planning of military
aircraft traversing hostile environments will also be studied in future work.

Acknowledgements

During the preparation of this report I received invaluable feedback from Maria Athanasse-
nas, Russell Connell, David Cox, Emily Duane, Simon Goss, Michael Papasimeon, Olivia
Smith and Josef Zuk; this work would not have come to fruition without their input.
In particular, I express my thanks to Josef Zuk for suggesting an approach that led to
Algorithm 9, and Alexander Vladimirsky for his valuable correspondence.

References

Alton, K. & Mitchell, I. M. (2012) An Ordered Upwind Method with precomputed stencil
and monotone node acceptance for solving static convex Hamilton-Jacobi equations,
Journal of Scientific Computing 51(2), 313–348.

Arnold, D. N., Mukherjee, A. & Pouly, L. (2000) Locally adapted tetrahedral meshes using
bisection, SIAM J. Sci. Comput. 22(2), 431–448.

Bänsch, E. (1991) Local mesh refinement in 2 and 3 dimensions, Impact of Computing in
Science and Engineering 3, 181–191.

34 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Bardi, M. & Capuzzo-Dolcetta, I. (2008) Optimal Control and Viscosity Solutions
of Hamilton-Jacobi-Bellman Equations, Modern Birkhäuser Classics, Birkhäuser,
Boston.

Beard, R. W., McLain, T. W., Goodrich, M. A. & Anderson, E. P. (2002) Coordinated
target assignment and intercept for unmanned air vehicles, IEEE Transactions on
Robotics and Automation 18(6), 911–922.

Betts, J. T. (1998) Survey of numerical methods for trajectory optimization, Journal of
Guidance, Control, and Dynamics 21(2), 193–207.

Bey, J. (1995) Tetrahedral grid refinement, Computing 55, 355–378.

Bortoff, S. A. (2000) Path planning for UAVs, in Proceedings of the American Control
Conference, pp. 364–368.

Cacace, S., Cristiani, E., Falcone, M. & Picarelli, A. (2012) A Patchy Dynamic Program-
ming scheme for a class of Hamilton–Jacobi–Bellman equations, SIAM J. Sci. Comput.
34(5), A2625—A2649.

Chaudhry, A., Misovec, K. & D’Andrea, R. (2004) Low observability path planning for an
unmanned air vehicle using mixed integer linear programming, in 43rd IEEE Confer-
ence on Decision and Control, pp. 3823–3829.

Cline, A. K. & Renka, R. L. (1984) A storage-efficient method for construction of a
Thiessen triangulation, Rocky Mountain Journal of Mathematics 14(1), 119–139.

Cristiani, E. (2009) A fast marching method for Hamilton-Jacobi equations modeling
monotone front propagations, Journal of Scientific Computing 39, 189–205.

Dai, R. & Cochran Jr., J. E. (2010) Path planning and state estimation for unmanned
aerial vehicles in hostile environments, Journal of Guidance, Control, and Dynamics
33(2), 595–601.

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs, Numerische
Mathematik 1, 269–271.

Evans, L. C. (1998) Partial Differential Equations, Vol. 19 of Graduate Studies in Mathe-
matics, American Mathematical Society, Providence, R.I.

Hjelle, Ø. & Dæhlen, M. (2006) Triangulations and Applications, Mathematics and Visu-
alization, Springer-Verlag, Berlin.

Hwang, Y. K. & Ahuja, N. (1992) Gross motion planning—a survey, ACM Computing
Surveys 24(3), 219–291.

Inanc, T., Muezzinoglu, M. K., Misovec, K. & Murray, R. M. (2008) Framework for low-
observable trajectory generation in presence of multiple radars, Journal of Guidance,
Control, and Dynamics 31(6), 1740–1749.

Kabamba, P. T., Meerkov, S. M. & Zeitz III, F. H. (2006) Optimal path planning for un-
manned combat aerial vehicles to defeat radar tracking, Journal of Guidance, Control,
and Dynamics 29(2), 279–288.

UNCLASSIFIED 35

DSTO–TR–2815 UNCLASSIFIED

Kao, C.-Y., Osher, S. & Tsai, Y.-H. (2005) Fast sweeping methods for static Hamilton-
Jacobi equations, SIAM J. Numer. Anal. 42(6), 2612–2632.

Kim, J. & Hespanha, J. P. (2003) Discrete approximations to continuous shortest-path:
Application to minimum-risk path planning for groups of uavs, in 42nd IEEE Con-
ference on Decision and Control, pp. 1734–1740.

Kumar, A. & Vladimirsky, A. (2010) An efficient method for multiobjective optimal con-
trol and optimal control subject to integral constraints, Journal of Computational
Mathematics 28(4), 517–551.

LaValle, S. M. & Kuffner, Jr., J. J. (2001) Randomized kinodynamic planning, The Inter-
national Journal of Robotics Research 20, 378–400.

Leader, J. J. (2004) Numerical Analysis and Scientific Computation, Addison Wesley,
Boston.

Maubach, J. M. (1995) Local bisection refinement for n-simplicial grids generated by re-
flection, SIAM J. Sci. Comput. 16(1), 210–227.

McLain, T. W. & Beard, R. W. (2005) Coordination variables, coordination functions, and
cooperative-timing missions, Journal of Guidance, Control, and Dynamics 28(1), 150–
161.

Mercer, G. N. & Sidhu, H. S. (2007) Two continuous methods for determining a minimal
risk path through a minefield, ANZIAM J. 48, C293–C306.

Milam, M. B., Mushambi, K. & Murray, R. M. (2000) A new computational approach to
real-time trajectory generation for constrained mechanical systems, in Proceedings of
the 39th IEEE Conference on Decision and Control, pp. 845–851.

Mitchell, I. M. & Sastry, S. (2003) Continuous path planning continuous path planning
with multiple constraints, in Proceedings of the 42nd IEEE Conference on Decision
and Control, pp. 5502–5507.

Muhandiramge, R., Boland, N. & Wang, S. (2009) Convergent network approximation
for the continuous euclidean length constrained minimum cost path problem, SIAM
Journal on Optimization 20(1), 54—77.

Novy, M. C., Jacques, D. R. & Pachter, M. (2002) Air vehicle optimal trajectories between
two radars, in Proceedings of the American Control Conference.

Pachter, M. & Hebert, J. (2001) Optimal aircraft trajectories for radar exposure mini-
mization, in Proceedings of the American Control Conference.

Pêtrès, C., Pailhas, Y., Patrón, P., Petillot, Y., Evans, J. & Lane, D. (2007) Path planning
for autonomous underwater vehicles, IEEE Transactions on Robotics 23(2), 331–341.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992) Numerical
Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press.

Qian, J., Zhang, Y.-T. & Zhao, H.-K. (2007a) A fast sweeping method for static convex
Hamilton–Jacobi equations, Journal of Scientific Computing 31(1/2), 237–271.

36 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Qian, J., Zhang, Y.-T. & Zhao, H.-K. (2007b) Fast sweeping methods for Eikonal equations
on triangular meshes, SIAM J. Numer. Anal. 45(1), 83—107.

Rowe, M. P., Sidhu, H. S. & Mercer, G. N. (2009) Military aviation applications for a
springs and masses safest path determining model, Journal of Battlefield Technology
12(1), 27–32.

Ruppert, J. (1995) A Delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration, Journal of Algorithms 18, 548–585.

Sethian, J. A. (1999a) Fast marching methods, SIAM Review 41(2), 199–235.

Sethian, J. A. (1999b) Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sci-
ence, Cambridge Monographs on Applied and Computational Mathematics, 2nd edn,
Cambridge University Press, Cambridge.

Sethian, J. A. & Vladimirsky, A. (2001) Ordered upwind methods for static Hamilton–
Jacobi equations, Proceedings of the National Academy of Sciences of the USA
98(20), 11069—11074.

Sethian, J. A. & Vladimirsky, A. (2003) Ordered upwind methods for static Hamilton–
Jacobi equations: theory and algorithms, SIAM J. Numer. Anal. 41(1), 325–363.

Shewchuk, J. R. (2002) Delaunay refinement algorithms for triangular mesh generation,
Computational Geometry 22, 21–74.

Sidhu, H. S., Mercer, G. N., Sexton, M. J., Ansari, N. A. & Jovanoski, Z. (2006) Optimal
path trajectories in a threat environment, Journal of Battlefield Technology 9(3), 1–7.

Tsai, Y.-H. R., Cheng, L.-T., Osher, S. & Zhao, H.-K. (2003) Fast sweeping algorithms
for a class of Hamilton–Jacobi equations, SIAM J. Numer. Anal. 41(2), 673–694.

Tsitsiklis, J. N. (1995) Efficient algorithms for globally optimal trajectories, IEEE Trans-
actions on Automatic Control 40(9).

Vian, J. L. & Moore, J. R. (1989) Trajectory optimization with risk minimization for
military aircraft, Journal of Guidance 12(3), 311–317.

Vladimirsky, A. B. (2001) Fast methods for static Hamilton-Jacobi Partial Differential
Equations, PhD thesis, University of California, Lawrence Berkeley National Labora-
tory.

Zabarankin, M., Uryasev, S. & Murphey, R. (2006) Aircraft routing under the risk of
detection, Naval Research Logistics 53, 728–747.

Zheng, C., Li, L., Xu, F., Sun, F. & Ding, M. (2005) Evolutionary route planner for
unmanned air vehicles, IEEE Transactions on Robotics 21(4), 609–620.

UNCLASSIFIED 37

DSTO–TR–2815 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

38 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Appendix A Triangulated Mesh Based on a

Cartesian Grid

An adaption of the key mesh dependent functions for the case of a triangulated mesh
based on a Cartesian grid is presented in this appendix.

The mesh point x(i, j) ∈ Ωh indexed by the mesh co-ordinate (i, j) ∈ ΩZ
h is given by

x(i, j) = xT + δ(i, j) , (A1)

where δ is the grid spacing and the triangulation diameter h =
√

2δ. The functions for
mesh transformations and mesh construction follow directly from Equation (A1).

There are many ways of constructing a triangulated mesh from a Cartesian grid, and
a general discussion of this topic is beyond the scope of this report. Instead, the set
of neighbours N(i, j) which has the same mesh co-ordinates as for a uniform mesh of
equilateral triangles (see Equation (20)) is shown in Figure A1.

The modifications of the FindSimplex and InterpolationCoefficients functions for
the case of a Cartesian grid can be found in Algorithms 13 and 14, respectively.

Figure A1: The N(i, j) set shown mapped onto Ωh as large dots for the case of a tri-
angulation based on a Cartesian grid. The x(· , ·) are given by Equation (A1) and the
triangulation diameter h =

√
2δ, where δ is the grid spacing.

UNCLASSIFIED 39

DSTO–TR–2815 UNCLASSIFIED

Algorithm 13: FindSimplex for the case of a Cartesian grid

Input: δ, xT , and x ∈ Ω where x = (x1, x2)
Output: {u,v,w} ⊂ Ω3

h, where uvw is a simplex with adjacent vertices that
contains x

1 {xc,x1,x2,x3,x4,x5,x6} ← MeshPoint
(
δ,xT , N(NearestIndex(δ,xT ,x))

)
2 if x2 > yc then
3 if x1 > xc then
4 return {xc,x1,x2}
5 else
6 if (x− xc) · (x4 − xc) >

√
0.5δ‖x− xc‖ then

7 return {xc,x3,x4}
8 else
9 return {xc,x2,x3}

10 else
11 if x1 < xc then
12 return {xc,x4,x5}
13 else
14 if (x− xc) · (x1 − xc) >

√
0.5δ‖x− xc‖ then

15 return {xc,x6,x1}
16 else
17 return {xc,x5,x6}

Algorithm 14: InterpolationCoefficients for the case of a Cartesian grid

Input: δ, x ∈ Ω, and {u,v,w} ⊂ Ω3
h, where uvw is a simplex with adjacent

vertices that contains x
Output: {ζ1, ζ2, ζ3} ⊂ R3, which are barycentric co-ordinates of x with respect to

{u,v,w} such that ζ1 + ζ2 + ζ3 = 1

1 C ← 1/δ2

2 z← x−w
3 C1 ← Cz · (u−w)
4 C2 ← Cz · (v −w)
5 {ζ1, ζ2, ζ3} ← {C1, C2, 1− C1 − C2}

40 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2815

Appendix B Verification of the AcceptedFront

update rule

The aim of this appendix is to verify the AcceptedFront update rule given by Equation (24).

To begin, let the states of the Accepted and Considered sets that are used to update
the AcceptedFront during the nth iteration of the OUM algorithm be given by An and
Cn, respectively. Then Equation (24) can be expressed as

AcceptedFrontn =
(
AcceptedFrontn−1 \N(x̄n)

)
∪ AdjacentTo(An ∩N(x̄n), Cn), (B1)

where x̄n is the most recently accepted mesh point at the nth iteration.24 Recall that, by
definition,

AcceptedFrontn = AdjacentTo(An, Cn). (B2)

The remainder of this appendix is devoted to proving that Equations (B1) and (B2)
generate the same sets.

For any sets X and Y , X = (X \ Y) ∪ (X ∩ Y). Therefore

AcceptedFrontn =
(
AcceptedFrontn \N(x̄n)

)
∪ AdjacentTo(An ∩N(x̄n), Cn),

by Equation (B2) and the definition of AdjacentTo in Equation (22). Consequently, if

AcceptedFrontn \N(x̄n) = AcceptedFrontn−1 \N(x̄n),

then Equations (B1) and (B2) will generate the same sets. Observe that25

AcceptedFrontn \N(x̄n) = An ∩N(Cn) ∩N(x̄n)c

= (An−1 ∪ {x̄n}) ∩N(Cn) ∩N(x̄n)c

= An−1 ∩N(Cn) ∩N(x̄n)c,

as An = An−1 ∪ {x̄n} and {x̄n} ∩N(x̄n)c = ∅. Furthermore,

AcceptedFrontn−1 \N(x̄n) = An−1 ∩N(Cn−1) ∩N(x̄n)c.

Therefore if
An−1 ∩N(Cn) ∩N(x̄n)c = An−1 ∩N(Cn−1) ∩N(x̄n)c, (B3)

then Equations (B1) and (B2) will generate the same sets.

To establish Equation (B3), the following identity is required for sets X, Y ⊂ ΩZ
h :

N(X ∪ Y) = (N(X) ∪N(Y))\ AdjacentTo(X,Y), if X ∩ Y = ∅. (B4)

LetX∩Y = ∅. IfX, Y also satisfy AdjacentTo(X,Y) = ∅, thenN(X∪Y) = N(X)∪N(Y).
However if AdjacentTo(X,Y) 6= ∅, then N(X) will contain elements that belong to Y ,

24Here it is more convenient to work with mesh points instead of mesh co-ordinates, which are used in
Equation (24).

25Recall that X \ Y = X ∩ Y c, where Y c is the complement of Y .

UNCLASSIFIED 41

DSTO–TR–2815 UNCLASSIFIED

and N(Y) will contain elements of X. Equation (B4) follows from these observations,
noting that AdjacentTo(X,Y) = AdjacentTo(Y,X) provided X ∩ Y = ∅.

The Considered set at the nth iteration of the OUM algorithm can be related to Cn−1

via
Cn ∪ {x̄n} = Cn−1 ∪ Cnewn ,

where Cnewn ⊆ Cn is the set of new points added to Considered during the previous
iteration. Consequently

N(Cn ∪ {x̄n}) = N(Cn−1 ∪ Cnewn). (B5)

Continuing,26

N(Cn ∪ {x̄n}) ∩N(x̄n)c = (N(Cn) ∪N(x̄n)) ∩ (Cn ∩N(x̄n))c ∩N(x̄n)c

= (N(Cn) ∪N(x̄n)) ∩N(x̄n)c

= N(Cn) ∩N(x̄n)c,

by Equation (B4), noting that Cn ∩N(x̄n) ⊂ N(x̄n) and N(x̄n) ∩N(x̄n)c = ∅. Therefore

An−1 ∩N(Cn) ∩N(x̄n)c = An−1 ∩N(Cn ∪ {x̄n}) ∩N(x̄n)c. (B6)

Similarly,27

An−1 ∩N(Cn−1 ∪ Cnewn) = An−1 ∩ (N(Cn−1) ∪N(Cnewn)) ∩ (Cn−1 ∩N(Cnewn))c

= An−1 ∩
(
Ccn−1 ∪N(Cnewn)c

)
∩ (N(Cn−1) ∪N(Cnewn))

=
((
An−1 ∩ Ccn−1

)
∪ (An−1 ∩N(Cnewn)c)

)
∩ (N(Cn−1) ∪N(Cnewn))

= An−1 ∩ (N(Cn−1) ∪N(Cnewn))

= (An−1 ∩N(Cn−1)) ∪ (An−1 ∩N(Cnewn))

= An−1 ∩N(Cn−1),

using Equation (B4), noting that Ccn−1 = An−1 ∪ Farn−1, An−1 ⊂ An−1 ∩N(Cnewn)c, and
An−1 ∩N(Cnewn) = AdjacentTo(An−1, C

new
n) = ∅, as Cnewn ⊆ Farn−1. It follows that

An−1 ∩N(Cn−1) ∩N(x̄n)c = An−1 ∩N(Cn−1 ∪ Cnewn) ∩N(x̄n)c. (B7)

Combining Equations (B5) to (B7) yields

An−1 ∩N(Cn) ∩N(x̄n)c = An−1 ∩N(Cn ∪ {x̄n}) ∩N(x̄n)c

= An−1 ∩N(Cn−1 ∪ Cnewn) ∩N(x̄n)c

= An−1 ∩N(Cn−1) ∩N(x̄n)c.

Therefore Equation (B3) is verified, and hence Equations (B1) and (B2) generate the same
sets.

26Recall that (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z), and (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z).
27De Morgan’s Laws state that (X ∪ Y)c = Xc ∩ Y c and (X ∩ Y)c = Xc ∪ Y c.

42 UNCLASSIFIED

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Globally Optimal Path Planning with Anisotropic
Running Costs

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHOR

Jason R. Looker

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

6a. DSTO NUMBER

DSTO–TR–2815
6b. AR NUMBER

AR 015–556
6c. TYPE OF REPORT

Technical Report
7. DOCUMENT DATE

March, 2013

8. FILE NUMBER

2012/1105822/1
9. TASK NUMBER

DS 07/245
10. TASK SPONSOR

COAD
11. No. OF PAGES

42
12. No. OF REFS

50

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/
publications/scientific.php

14. RELEASE AUTHORITY

Chief, Air Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations
17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

collision avoidance, mission planning, numerical algorithms, optimal control, optimisation, trajectories
19. ABSTRACT

There are many diverse numerical methods that can be applied to solving path planning problems,
however most of these are either not valid or impractical for solving anisotropic (direction-dependent)
path planning problems. Ordered Upwind Methods (OUM) are a family of numerical methods for ap-
proximating the viscosity solution of static Hamilton-Jacobi-Bellman equations, and have been tailored
to solve anisotropic optimal control problems.
There is little information in the literature regarding the implementation of OUM, and a wide range
of computational techniques and meticulous algorithmic considerations are required to successfully
implement OUM. A comprehensive, generic implementation of OUM is documented in this report,
with the intention of minimising the technical barriers to employing OUM in real-world applications.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Author
	Contents
	Glossary
	Notation
	1 Introduction
	1.1 Optimal Control
	1.2 Admissible Controls
	1.3 Parametrisation
	1.4 Isotropic Running Costs

	2 Ordered Upwind Method
	2.1 Computational Mesh
	2.2 Upwinding Approximation to the DPP
	2.3 OUM Sets
	2.4 The OUM Algorithm

	3 Implementation
	3.1 Mesh Functions
	3.2 Set Construction
	3.3 Tentative Value Function

	3.4 The OUM Algorithm Revisited
	3.5 Visualisation

	4 Examples
	4.1 Isotropic Running Costs
	4.2 Anisotropic Running Costs

	5 Conclusion
	Acknowledgements
	References
	Appendix A Triangulated Mesh Based on aCartesian Grid
	Appendix B Verifi
cation of the AcceptedFrontupdate rule
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

