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ABSTRACT

In this report, techniques generally employed in the analysis of intercept guidance problems are
reviewed. From the governing non-linear equations describing such problems, two basic linear
models are derived. Traditionally, these linear models are utilised as a basis for preliminary
intercept engagement studies. Under certain input conditions, the two models are mathematically
equivalent and, hence, have been used interchangeably by weapons analysts to yield appropriate
design and performance data in support of their programs. However, for a specific set of initial
conditions, which includes a very important class of practical problems that may be assessed with
the use of these models, it is noted herein that one of these linear models produces incorrect
performance data when compared to a non-linear simulation of the engagement. In contrast, the
other model produces consistent results with those generated by the non-linear simulation
regardless of the initial conditions considered. To remedy this discrepancy, the necessary
mathematics are derived to bring the two formulations into alignment for any form of the initial
conditions and inputs to the system. Consequently, this leads to a consistency in the
corresponding adjoint models which are constructed from these linear models, thus ensuring the
generation of correct output data regardless of which model is employed by the analyst.
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On Alternative Formulations for
Linearised Miss Distance Analysis

Executive Summary

In this report, the missile-target engagement problem is analysed. As part of the analysis,
the non-linear governing equations are reviewed for motion in a single plane. These non-
linear equations are employed for two purposes. Firstly, the equations form the basis of a
non-linear simulation program developed in Simulink. This Simulink model is controlled
and executed via a graphical user interface specifically developed as an aid for the
weapons analyst to study the engagement problem. Secondly, the non-linear equations are
utilised as a basis for linearisation and, hence, the derivation of an approximate linear
model of the engagement. Two different formulations of the linear model are derived.
These are designated as Model A and Model B in the report.

Although both models are generally used interchangeably in the literature for guided
missile homing loop analysis, it is demonstrated herein that, under certain input
conditions, care needs to be exercised when using one of these models, Model A, for
performance analysis. In order to ensure that both models yield the same performance
data for all input conditions considered, a correction factor is derived. This correction
factor needs to be included in the form of an added initial condition on one of the states in
the state space representation of Model A. Simulation results show that the two models
are in agreement when this correction factor is applied. Knowledge of this fact is
important to ensure that analysts generate correct performance data when using linear
techniques such as the adjoint method. The adjoint model is constructed from a
knowledge of the forward linear model, that is, Model A or Model B, and is traditionally
employed by analysts as part of the solution process.

To gain further insight into the nature of the missile-target engagement problem and the
parameters that influence performance, also included in this report is an analytical
treatment of the problem. It is well known that, when the missile guidance dynamics is
represented by a first order lag (single time constant system), then the linear differential
equations describing the intercept problem are readily amenable to analytical treatment.
Consequently, an analytical investigation of each model (A and B) is carried out for the
range of input conditions considered herein. The resulting closed form solutions from each
model are compared and are shown to be mathematically equivalent for all input
conditions considered provided that Model A has the proposed correction factor
implemented. For simulation purposes, the corresponding adjoint model of Model A and
Model B are constructed and then implemented in Simulink. As with the analytical results,
outputs from the two models are shown to be in agreement. Finally, the models are
extended to represent more realistic guidance system dynamics (fifth order system) and
simulation results are generated and compared.

UNCLASSIFIED



UNCLASSIFIED

Finally, a special relationship linking two of the derived miss distance formulas is noted
and explored further. This relationship highlights a connection between the miss distance
due to an initial target displacement and that due to an initial heading error in the context
of the linear analysis. Following verification using linear simulation, a formula based on
this relationship is derived and proposed as a means for predicting performance data of
more complex linear systems. This formula may also be used in connection with the non-
linear simulation model for generating approximate miss distance profiles due to the
effects of a step in target position prior to intercept. A step in target position typically
arises in problems associated with the seeker resolution of the target in a multi-target
scenario. It may also arise in the case of a single target scenario. For this case, the missile
may be on a collision course with the predicted intercept point (PIP) of the target.
However, at the time of seeker turn-on, the PIP may not necessarily coincide with the
actual target position.
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1. Introduction

The equations describing the dynamics and geometrical interactions between an interceptor
and its target are generally non-linear and complex and are usually beyond the scope of
analytical investigations. Therefore, they are solved approximately using computer
simulation. Simulation provides the missile analyst with a basic capability for assessing the
performance and behaviour of the interceptor under varying conditions of the engagement
and can provide answers to questions such as, “What is the overall effect on miss distance due
to a sudden shift in target direction?” However, to gain critical insight into the nature of such
interactions and to identify key parameters that may affect the performance and behaviour of
the interceptor, engineers often make use of simplifying assumptions in order to linearise the
governing equations. Once in linear form, the engagement equations are more easily tackled
using established linear techniques. Two such techniques are the adjoint simulation method
and the covariance analysis method.

In this report, we first review the engagement model based on two dimensional (2D)
non-linear dynamics. Following this, we make use of linearisation to reduce the equations to a
form amenable to linear analysis. Using standard block diagram algebra, these linear
equations are then used to derive two basic models, referred to as Model A and Model B,
which may be used as the basis for the linear analysis of planar missile/target engagements.
In the literature, these models are often used interchangeably for preliminary analysis of the
performance of guided missile systems [1-6]. However, as is demonstrated herein, caution
must be used when adopting one of these models under certain initial conditions of the state
variables. It is shown that the mathematical equivalence of the two block diagram topologies
representing the models is dependent on the nature of the initial conditions imposed on the
states of the system. For example, if the initial condition is based on an initial heading error in
the missile, then both models yield the same miss distance results. However, if the initial
condition stems from a step in target displacement (this condition is used to study missile
performance against multiple targets), then the two block diagram topologies, as currently
employed in the open literature, will lead to miss distance results that differ significantly.
Consequently, applying the adjoint method to these two systems will also give different
results. To correct this inconsistency, the necessary mathematics is derived to bring the two
formulations into alignment for any of the initial state conditions. This then leads to
consistency in the associated adjoint models regardless of which linear formulation is pursued
by the analyst. In addition, closed form solutions of the miss distance variation in terms of
flight time have been derived for the case when the missile guidance loop may be
approximated dynamically by a first order lag term. Finally, simulation results and design
curves are generated for more realistic guidance systems.
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2. Non-linear Engagement Equations

2.1 Planar Engagement Model
Consider a missile-target engagement under the following assumptions; the engagement is
confined to the X-Y plane, the force due to gravity is ignored, and the missile velocity and the

target velocity remain constant. The geometry of the engagement is depicted in Figure 1.

The non-linear differential equations describing the motion of the target are [1],

X_ =-V_cos(B) (1)
Y =V_sin(p) 2)
n

P €)
p V

.
where (X;,Y;) defines the target position, V; is the constant target speed, n; is the target

acceleration while /3 refers to the target flight path angle as shown in Figure 1. The dots over
the variables denote differentiation with time. The initial conditions are given

by X, (0) = X1, Y; (0) = Y;, and B(0) = 4.

Y A

~Vv

Figure 1. Engagement Geometry
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Similarly, the non-linear differential equations describing the motion of the missile are,

X, =V @
Y =V, (5)
V., =-n_sin(4) (©)
V., =n cos(A) )

Here, (x,,.v,) defines the instantaneous position of the missile while (V\,,V,, )are the
components of its velocity vector. Furthermore, n_. denotes the missile commanded
acceleration and A is the line of sight angle as shown in Figure 1. The initial conditions are
given by X, (0)=X,, Yy (0)=Yyr Vix(©)=V,cos(L+HE+2) and v, (0)=V,sin(L+HE+1) Where
V,, denotes the constant missile speed, L is the missile lead angle associated with the collision
triangle and HE refers to the initial deviation of the missile from the collision triangle

commonly known as the heading error. The lead angle L can be found by application of the
law of sines on the collision triangle yielding the formula

L =sin"{V_sin(8+1)/V,}. (®)
To find the missile acceleration components, it is necessary to determine the components of

the relative missile-target separation. Let the components of the relative missile-target
separation be expressed as

A =X X, 9)
A =Y -Y, . (10)

Consequently, the range R between missile and target is given by

1

R=(A +A"), (11)

while the line of sight angle A is given by

A=tan *[AYJ . (12)

X

The line of sight rate can be easily derived from this expression by differentiating with respect
to time, giving
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_AA -A A, _ (13)
R2

A

The closing velocity is defined as the negative rate of change of the missile target separation,
thatis, V, = —R, which, after using eq (11) above, leads to the relation,

_—(AA +AA) | (14)
‘ R

\Y

Consequently, the magnitude of the missile guidance command n_ can be found from the

definition for proportional navigation guidance,
n =NVA, (15)
where N is a given constant.

If we model the actual acceleration of the missile n by a first order lag term, then

n 1

= (16)
n, 1+7s

A 2D simulation model is easily developed using the above equations. For this study,
MATLAB/Simulink was used to develop the simulation model. The top level Simulink model
is presented in Figure 2. The details of each subsystem of the model are given in Appendix A.
Figure 3 presents a screen shot of the Graphical User Interface (GUI) used in this study. The
GUI was specifically designed as an aid in running the simulation. The MATLAB software
underpinning the construction of the GUI is also presented in the Appendix.

At the GUI level, the missile and target parameters may be entered by the analyst. On the left
of the GUI, the analyst can enter initial target position, target speed and flight path angle. On
the right of the GUI, the analyst can enter initial missile position, missile speed, effective
navigation constant and guidance loop time constant. Inputs for the simulation include target
manoeuvre (NT), error in the initial heading angle (HE) and jump in the target position
(Displace) at some time (THOM) prior to intercept.
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Figure 2 Two Dimensional Engagement Model in Simulink
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Run Sim

Figure 3. Graphical User Interface to run the 2D Engagement Model
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2.2 Simulation Results

The Simulink model given above may now be used to conduct simulation studies of the
missile/target engagement problem. The simulation studies will be based on the following
three simulation inputs;

(@) a step in target manoeuvre
(b) an error in initial heading angle
() a step in target position

Interest in (c) above stems from the analysis of multi-target scenarios as is described in
Section 2.2.3.

2.2.1 Step in target manoeuvre

Consider the case in which the only disturbance is a 3¢ target manoeuvre starting at time
t = 0. The nominal values for target and missile parameters may be easily identified in the

GUlI given in Figure 3. In this scenario, the missile and target are initially on a collision course
and flying along the downrange component of the earth fixed co-ordinate system. Thus, the
target velocity vector is initially along the line of sight and, at first, all 3¢ of the target
acceleration are perpendicular to the line of sight. However, as the target manoeuvres, the
magnitude of the target acceleration perpendicular to the line of sight reduces due to the
turning of the target.

Sample missile/ target trajectories for this case with effective navigation ratios of 3 and 5 are
shown in Figure 4. It is clear from the figure that the higher effective navigation ratio causes
the missile to lead the target slightly more than the lower navigation ratio case.

Figure 5 presents the respective missile acceleration profiles obtained from the simulations.
Note that, although both acceleration profiles are monotonically increasing for most of the
flight, the higher effective navigation ratio case leads to less acceleration requirement of the
missile towards the end of flight. Also noteworthy from the plot is the observation that the
peak acceleration required by the missile to hit the target is significantly higher than the
manoeuvre level of the target (33).

2.2.2 Heading error

Next, consider the case in which the only disturbance is a 20 degree error in the initial heading
angle, that is, HE = -20 deg. Again the simulation was run for two values of the effective
navigation ratio. Sample trajectories for effective navigation ratios of 3 and 5 are presented in
Figure 6. From the figure, it is apparent that initially the missile is flying in the wrong
direction because of the heading error. Gradually the guidance law forces the missile to head
towards the target. It is interesting to note from the figure that the larger effective navigation
ratio enables the missile to remove the initial heading error more rapidly, thus leading to a
tighter missile trajectory in this case.
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In Figure 7 is plotted the resultant missile acceleration profiles for each case. From the figure,
it is observed that the faster removal of heading error in the higher effective navigation ratio
case is associated with larger missile accelerations at the beginning of flight

750

7001 | 39 Target Manoeuvre

650 -

600 -

550

Crossrange (m)

500

450 -

400 -

Missile, N'=3

350

0 1000 2000 3000 4000 5000 6000
Downrange (m)

Figure 4: Missile performance against manoeuvring target

e

n_ @

- 1 L L L L
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Figure 5:  Acceleration profile for Target Manoeuvre Case

UNCLASSIFIED



UNCLASSIFIED
DSTO-TR-2845

400

-20 deg Heading Error ‘

350

300

Crossrange (m)
= = N ]
o al o al
o o o o

[
o
T

~
.

Missile, N'=3

-50 >~ :

0 1000 2000 3000 4000 5000 6000
Downrange (m)

Figure 6:  Missile performance when initial heading angle is in error
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Figure 7:  Missile performance when initial heading angle is in error
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2.2.3 Step in target position

The non-linear engagement simulation program may be used to analyse the missile response
to a sudden jump in target position at a certain time prior to intercept. This is useful in
supporting simulation studies concerning the effects of seeker resolution on the performance
of the missile when confronted with multiple targets.

Consider the scenario shown in Figure 8 [1]. On the left is the missile engaging two targets
which are flying in formation. Both targets have the same speed and are separated by a
spacing of Ad metres. It is assumed here that the power centroid is located half way between
the targets. In this case, the input parameter, “Displace” in the GUI of Figure 3 is equivalent
toAd / 2 metres. For the simulation, it is assumed that the missile is initially on a collision
course with the power centroid. At a certain time to go before intercept with the power
centroid, seeker resolution occurs and the missile is presented with the true target, that is,
Target 1. At this time, it will appear to the missile as if the target position jumps from the
power centroid to Target 1. From a simulation perspective, it is only necessary to model the
target currently seen by the missile. Therefore, for most of the flight, the missile will be
guiding on the power centroid and for the rest of the flight, following seeker resolution, the
missile will be guiding on Target 1. This is represented in the simulation by the target position
being updated by a step in target displacement at a given time to go prior to intercept
(THOM).

The non-linear 2D engagement model is used to generate sample simulation results of this
type of engagement. Relevant simulation results are presented in Figure 9 and 10 below.

Y a

V. Target 1
—
Power I Ad
Missile \/ A Centroid 7
m— —@
I Ad
VT 2
Target 2

v

Figure 8:  Missile engaging two targets flying in formation
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Figure 9:  Missile performance in multi-target case
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Figure 10:  Acceleration profile in multi-target case
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3. Linearised Engagement Equations

In this section, analytical tools are employed to gain further insight into the performance of
the interceptor under different engagement conditions and to better understand its dynamic
response. In particular, the adjoint method is applied to a simplified version of the
engagement equations. The simplified equations of motion are derived using linearization
about the line of sight angle between missile and target. The procedure follows closely that
outlined in Zarchan [1].

First, define the relative separation between the missile and target perpendicular to the fixed
reference as defined in Figure 11,

y=Y =Y . (17)
The relative acceleration is expressed, by inspection of the figure, as
§=ncosf—n_cosA. (18)

Y A

v

>
X

Figure 11: ~ Engagement Geometry for Linearisation

For small flight path angles, that is, near head-on or tail chase case, the cosine terms are
approximately unity, and the previous equation (18), reduces to

y=n —n_. (19)
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Similarly, the line of sight angle, which is given by,
sind = Y : (20)
R

may also be linearised, using the small angle approximation, yielding the expression

1= (21)
R
For a head-on case, the closing velocity is approximated by
V.=V +V 22)
and in a tail chase situation, the closing velocity is approximated by
V. =V, -V . (23)

Consequently, for constant missile and target speed, the closing velocity may be treated as a
positive constant. However, the closing velocity has previously been defined as the negative

derivative of the range from missile to target, thatis, V, = —R , and since the range must go to

zero at the end of flight, we can approximate the range equation with the time varying
relationship,

R=V_(t. —t). (24)

In the above expression, t denotes the current time and tF is the total flight time of the

engagement. Note that {_is a constant here.

The linearised miss distance is defined to be the relative separation between missile and target
at the end of flight, namely,

MD = y(t.). (25)

Using equations (19), (21), (24) and (25), and adding the information given by equations (15)
and (16), we are able to build a block diagram model for the linearised version of the homing
equations. This model is displayed in Figure 12 below. In the diagram, the symbol § refers to
differentiation in the frequency domain using Laplace Transform terminology.

In order to implement this block diagram model in Simulink, it is prudent to combine the
single S block with the transfer function block given by 1/ (1 + ZS) . This is possible in this case

as N VC is a constant. Thus, following this process, the revised block diagram model for the

linearised equations is presented in Figure 13. This model is designated here as Model A. Note
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that the block diagram displayed in Figure 13 now contains an inner closed loop block
structure. This alternative block structure is mathematically equivalent to the single block
with transfer function S/(1+ ZS) The process is known as reducing the block to its

fundamental closed loop form and has been achieved here using standard block diagram
algebra. This alternative representation is important in the sequel.

MD = y(t.)

yyll y

T 1 1
e = < = > >
3 s : V() >
nL
n
1 C
1+ NV,
Figure 12:  Linearised Geometry Model
MD = y(t.)

y T + — A
V.(t 1) _’O_’ 7

v

v

=
n
<l

o | Y
<

n | =

|
|
—
(ZN
A

Figure 13:  Linear Model A

Model A is typically employed in support of analytical studies of the homing loop problem in
the literature [1,2,3]. This model is also used as the basis for adjoint analysis of the guidance
loop. It is shown in the sequel that while this model is useful for performance studies
associated with target manoeuvre and heading error effects, caution needs to be exercised
when using the model as a basis for analysis of multi-target problems.

An alternative block diagram structure typically employed in the literature for homing loop
studies [1,4,5,6] may be derived using the analytical expression for the rate of change of line of
sight angle. For the non-linear model, the rate of change of the line of sight angle is given in
equation (13). After applying the linearisation conditions stipulated above, the expression for
the line of sight rate becomes
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j=_ vy Ly (26)
V_(t, —t)  V_(t. —t)’

or equivalently,

i (t,y+y) | 27)
V.t

where the term t denotes the time to go and is defined as t = t —t.
go go

After incorporating the analytical expression for the line of sight rate into the linearised set of
equations, an alternative block diagram for the homing loop dynamics may be derived. This
alternative block diagram, designated as Model B, is displayed in Figure 14.

MD=y(t.)

A

T O ! ) [y A Vg W s

v

) 4

L go

Figure 14:  Linear Model B

In the literature, these two models (Model A and Model B) are often used interchangeably as
the basis for a preliminary analysis of the performance of the generic guided missile homing
loop [1-6]. The next section covers a comparison of the two models through the use of
simulation and highlights input conditions under which the models yield different results. For
these input conditions, caution should be exercised by the analyst when adopting these
models, particularly when considering Model A.

4. Comparison of the Linearised Models

The two linear models have been implemented in Simulink in preparation for a comparative
simulation study. The Simulink implementation of Model A and B are presented in Figures 15
and 16, respectively. For the present work, the simulations of the linear models are carried out
under the same input conditions considered in Section 2.2 above. This allows a comparison of
the simulation results generated by the linear models against those obtained by the non-linear
model. To do this, the time of intercept displayed in the GUI after running the non-linear
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model is recorded as the approximate flight time, {_, for the engagement. This flight time is

then used in the linear models. Additionally, the same numerical values for the parameters
are used, as shown in the GUI in Figure 3.

MD
Nt +—P % —Pp % 1 Inl Outl
Nt Integ Integl

1/VcTgo

.

NL

Figure 15:  Simulink Implementation of Linear Model A

MD
Nt _>@_> % ] % —>(, plinl  outt
Nt Integ Integl TNGTgo2
Inl Outl 4
Tgo
LT e o<
N Integ2 Gain Np Ve

Figure 16:  Simulink Implementation of Linear Model B

41.1 Step in target manoeuvre

A step in target acceleration of magnitude 3¢ is applied to both linear models and all other
inputs are set to zero. The simulation results are presented in Figures 17 and 18 below.
Figure 17 shows the time history of the relative displacement profile while Figure 18 shows
the achieved missile acceleration profile. It is clear from the figures that both Model A and
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Model B simulation results agree. Furthermore, the linear models provide a good
approximation to the non-linear engagement model in this case.

100

%! Model. A |
Non-Linear

8ol Model B i

70} 1

o \\ |

50 8

Rel Displ y (m)

40} 1

30 8

20 1

O L L L L L
0 1 2 3 4 5 6

Time (s)

Figure 17:  Comparison of relative displacement profile in the case of a 3g step in target manoeuvre

15
Non-Linear
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Model B
10+ B
2
-
Z 5 1
[4]
(8]
o
<
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Figure 18:  Comparison of missile acceleration profile in the case of a 3¢ step in target manoeuvre
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4.1.2 Heading error

In this case, an error in initial heading angle of -20 degrees is considered with all other inputs
set to zero. Again, the simulation results from the linear models are compared with those
generated by the non-linear engagement model. The heading error is introduced in the linear
models as an appropriate initial condition on the first integrator in the Simulink model of
Figure 15 and 16, respectively. The results of the simulations are presented in Figure 19 and 20
below.

The figures indicate that both linear models agree in this case and that they represent a good
approximation to the dynamics of the non-linear engagement model.

50
04 Non-Linear ] 4
Model A
-50+ —+—— Model B ) b
-100 4
E -150 - E
>
.% -200 - 4
a
E -250 + E
-300 - E
-350 - E
-400 - E
.450 L L L L L
0 1 2 3 4 5 6
Time (s)

Figure 19:  Comparison of relative displacement profile in the case of a heading error of -20 deg

4.1.3 Step in target position

Here, interest lies in the response of the missile to a sudden step in target position at a certain
time to go prior to intercept. This scenario simulates the effect of target resolution by the on-
board seeker in a multi-target scenario. For the linearised models, this condition translates
into an appropriate initial condition placed on the second integrator (Integl) in Figures 15 and
16.

Simulink simulations were carried out for both linear models and then compared to the
corresponding non-linear results, as shown in Figures 20 and 21 below. These plots show that
Model A results do not agree with Model B results. Furthermore, the plots demonstrate that
Model B results are a good approximation to the simulation results generated by the non-
linear model. However, the same cannot be said of Model A in this case.
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10

Non-Linear
Model A

—+— Model B

Accel NL (9)

Figure 20: ~ Comparison of missile acceleration profile in the case of a heading error of -20 deg

Consequently, the observations gleaned from the foregoing simulations suggest that Model B
is a sufficiently accurate linear model when considering the missile target engagement
problem. And this is so regardless of the three input conditions considered. However, caution
needs to be exercised when using Model A for this purpose as it has been shown via

simulation to produce erroneous results under one of the stipulated input conditions (see
Figure 21 and 22).
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Figure 21:  Comparison of relative displacement profile in the case of a jump in target position of
60 m
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Figure 22:  Comparison of missile acceleration profile in the case of a jump in target position of
60 m
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5. Derivation of a Correction for Model A

In this section, an analysis is carried out to explore whether Model A can be brought into
alignment with Model B when the input condition is a step in target displacement. Consider
the block diagram of Model A given in Figure 13 and reproduced in Figure 23 for
convenience. In Figure 23, the states of the system have been included in the block diagram,
designated by x;, as has the desired input conditiony, .

MD = y(t.)

YI T +
i VAT 'O_’

X c\r

: 1

=
+
<
v | =
<

v

|
X
—_—|o

ZEES N S

A

<

Figure 23:  Linear Model A with system states displayed

By inspection of the diagram, the state space equations may be easily written down. They are,

X =n -NV_x,, (28)

X, =X, (29)

1. X (30)
X, =— —X,).
=)

C "go

In this case, the initial conditions are, X, (O) =0, X, (O) =Y. and X, (0) = (. Thus, for time

zero, equation (30) yields

1y
(0= &1

C™F

Consequently, the initial value of the relative acceleration {(0) will have the magnitude
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Vv N | yic 32
9(0) = %,(0) =n, —= *=. 2
1,
This is physically impossible as it implies a jump in missile achieved acceleration whenever
the initial condition on Y is non-zero. To counteract this effect, a requirement is placed on the

filter initial condition as follows,

%(0)= % )

C"F

When this correction, in the form of a non-zero initial condition on the filter, is applied to
Model A, the simulation results generated by both linear models agree as shown in Figure 24
and 25 below.

Thus, in conclusion, any of the linear models, Model A or Model B, derived previously may be
used for linear analysis of the missile target engagement problem provided that Model A is
used in conjunction with the correction factor derived above. It is noteworthy to point out that
in the case when vy, is zero, no initial correction of the filter is necessary.

70

Non-Linear
—+— Model B

60 {pososose: 8
—e— Model A with IC

50+

40|

30

Rel Displ 'y (m)

20+

10

_10 L L L L
4 4.2 4.4 4.6 4.8 5

Time (s)

Figure 24:  The relative displacement profile generated by the linear models now agree for the
initial displacement case
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—e— Model A with IC
60+ B
40 - B
20 L JUTED UGN

Accel NL (9)
: o

-20

40}

60t

-80+

-100 L L 1
4 4.2 4.4 4.6
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Figure 25:  The missile acceleration profile generated by the linear models now agree for the initial
displacement case

6. Analytical Formulas

The linearisation of the engagement model is important for two reasons. Firstly, with a linear
model, powerful computerised techniques, such as the adjoint method, may be utilised to
analyse the missile guidance system both statistically and deterministically in one computer
simulation. Moreover, with this technique, error budgets are automatically generated so that
key system drivers may be identified and a balanced system design can be achieved.
Secondly, under special circumstances, the linear engagement model is mathematically
amenable to analytical solutions. These solutions can assist, during the preliminary phases of
amissile design, in gaining insights for system sizing. Furthermore, the form of the analytical
solutions will provide clues on how key parameters may influence system performance.

In this section, closed-form solutions are derived for the three important cases that were
considered above for the engagement simulations. The aim is to derive closed-form solutions
associated with Model A and Model B independently and then to show that these solutions
are mathematically equivalent provided that the filter initial condition is included in Model A.
It has been shown in the literature [1] that closed form solutions for the linear engagement
model may be obtained more easily using the adjoint method. Therefore, this is the method
employed in the derivation process.
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6.1 Closed-Form Solutions for Model A

The adjoint block diagram of Model A is presented in Figure 26. This model was constructed
from the forward loop model given in Figure 13 using the usual rules of adjoint construction
given in references [1, 3]. Note that X, in the diagram refers to the filter initial condition

derived in the last section and is expressed, in this case, as

yic . (34)

Also in the diagram, the initial condition for the heading angle error is defined as

HA=-V HE. (35)

MDHA yic

+«— HA Y. — S

A +

T 1 1. T H 1.

s | s | S 7 V.t N

nT

l » NV,

MD

NT

Figure 26:  Adjoint Model A

In this form, the state equations associated with the adjoint block diagram (Figure 26) are
mathematically challenging for analytical work. However, using block diagram algebra [1],
the structure of this block diagram may be conveniently reduced to a form such as to allow
easy mathematical treatment of the problem. The reduced form of the block diagram is
presented in Figure 27 below. In the diagram, h(t) is designated as an adjoint output signal

while the weighting function W(t), after frequency domain transformation, is defined as

W(s) = N . (36)
S(1+1S)
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MD
MD, % > N, "
_ le
A 1 MDHA
< I HA b—>
1 T MD
S |—> S > V. X, —>
F N
+ h(t
o »() »W(s)|— % ()
+

Figure 27:  Reduced Form of Adjoint Model A

Using the convolution integral, the adjoint output is related to the input by

1 37
n@® = [ WS- -h(t-ndn. “
After taking the Laplace Transform of the preceding equation, one obtains
- W E-H T, @)
S
However, since
dH d
LT H(9), (39)
& gsi HEI
the technique of separation of variables is invoked to arrive at
d(@—H) 40
— 7 _—|W(s)ds . (40)
[ =[we)
The solution to equation (40) is given by
1-H(s) = Cexp( j W (s)ds) , (41)

where Cis a constant of integration. This constant can be evaluated by first noting from
Figure 27 that the miss distance due to a step in target displacement of magnitude y is given

by (using frequency domain notation)
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L{MD, }= ys [L-H()] . (42)

In the above expression, the term L{ } refers to the Laplace transform of its argument. Let the

magnitude of the step be unity. Then, in the time domain, the miss distance due to a unit step
in target displacement at time zero will be unity. Thus, invoking the initial value theorem
leads to

MD, (0)=1= T@{l—gl(ﬂj . (43)

Therefore, C is chosen to satisfy the following relation,

M Cexp([W(s)ds) =1 . (44)

In this case, since W () is given by equation (36), then it follows thatC =1, and equation (41)

is reduced to

1-H(s) = exp(JW (s)ds) . (45)
Consequently,
Jw(s)ds =N S(ldfzs) , (46)
=N'j[i—(s+11/7)]ds, “7)
=N'In( > j (48)
s+1/7

Now, after substitution of this expression into equation (45) above, one obtains the
fundamental relationship

1—H(s):( > j (49)

s+1/t

Consequently, from inspection of the adjoint block diagram given in Figure 27 above, it is easy
to write down expressions (in frequency domain notation) for each of the desired outputs as
follows. The miss distance due to a step manoeuvre of magnitude n_is given by
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MD, . 1-H(s) 1( s '
LMy 3( ):3( ] | (50)
n, S s’\s+1/7

The miss distance due to an initial heading error is given by

L{MDHE}:_VM[l—H(s)]:—VM( s j (51)
HE s’ s* \s+1/7

For a step in target displacement, the miss distance formula is composed of two parts, namely,
that due to Y. and that due to X, - The part due to Y. is

S s\s+1/7

g T "

ic

while the part due to X is, according to Figure 27,

L{I\/IDxic}:[l—H(s)]\N(s):I\IZ( s j 1 (53)

V_X, s s’ \s+1/7) s+l/zc’

Therefore, for an effective navigation ratio of 3, the inverse Laplace Transform of the above
expressions is taken, yielding the analytical expressions in equations (54) and (55). Note that
the time variable appearing in the expressions is adjoint time which may be interpreted as
total flight time {_for the engagement problem.

M DNT
n

T

=0.5t%e™"" | (54)

N'=3

and

MD,,
HE

27

— _VMtFelF/r(l_tFj ] (55)

N'=3

Furthermore, the miss distance due to a step in target displacement may be determined by the
addition of the inverse Laplace Transform of equations (52) and (53). The closed form
expression for this is

MD MD _
( yic j — yic + M Dxm ’ (56)
yic Tot | N'=3 yic N'=3 yic N'=3
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where
MD_ i
yic :[1_2ti+0.5ti2]eftplr ’ (57)
yic N'=3 T T
and
MD_ ’
xic :[1l5ti_0.5t7|:2]e—tplr ] (58)
yic N'=3 T 4

In deriving equation (58) above, use was made of equation (34). Consequently, adding the
above expressions yields the miss distance due to a step in target displacement of magnitude

Y. namely
( MD,, j
in Tot

6.1.1 Adjoint of Model A in Simulink

_[-05%]e . 9)
T

N'=3

A Simulink model of the adjoint system of Model A (Figure 26) is shown in Figure 28. This
model is used to generate simulation data for comparison with the closed form solutions
given previously. The comparisons are displayed in the following figures.

<
MDHE MDyic

1 1 1
3 = x = . (0] ]
MDNT
Nt Int2 Int Intl

1/Vclt

MDxic TIVCITF
4>{ -1 }{Np ){Vc
Minus Np Ve
Figure 28:  Adjoint Model A in Simulink
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Figure 29:  Adjoint Simulation and Formula agree for MDnr
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Figure 30:  Adjoint Simulation and Formula agree for MDyE
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Figure 31:  Adjoint Simulation and Formula agree for MDyic

The plots confirm that the closed form solutions and the Simulink simulation results based on
the linear adjoint of Model A agree for the particular cases considered here. Thus, either
approach may be used for preliminary system design. Recall that the closed form solutions are
based on a single time constant guidance loop. However, for higher order systems, the
equations become mathematically intractable. Thus, using the simulation model allows the
analyst added flexibility for studying more complex homing loop systems with minimum
extra effort due to the block diagram features of Simulink. This aspect shall be considered
further in a later section of the report.

6.1.2 Comparison with non-linear results

Here, the non-linear engagement model, as presented in Section 1, is used in a multi-run mode
to generate the miss distance profile as a function of flight time or time to go. This will enable
a comparison of the non-linear simulation results with those obtained using either the linear
adjoint model in Simulink or the closed form solutions derived earlier. For the non-linear
model, the approximate miss distance calculation method, as employed by Zarchan [1], is
utilised. Furthermore, in order to obtain the miss distance profile as a function of flight time
using the non-linear simulation, a range to go parameter is defined and utilised in the process.

The miss distance generated using the non-linear model for a step in target manoeuvre of
magnitude 3¢ is shown in Figure 32 for different flight times. Superimposed on this plot is the
miss distance profile computed from the closed form solution for this scenario. It is clear from
this plot that the closed form solution provides sufficiently accurate results for low values of
flight time. As the flight time increases, the plot shows that the non-linear results tend to
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diverge. According to linear theory, the miss distance tends to zero for flight times that are
approximately greater than ten times the missile response time constant. This is clearly
evident in the figure as the missile time constant is 0.3 in this case. Consequently, beyond a
flight time of 3 seconds, linear theory is less accurate in this case.

In Figure 33, the non-linear simulation results are compared with those obtained using the
closed form solution for the case of an error in initial missile heading angle. In this case, good
agreement is obtained for most of the flight times considered. Large discrepancies occur when
the total flight time is very small. This stems from the fact that under such conditions, the
engagement scenario is significantly non-linear. As a final comparison with the non-linear
simulation, the case of a step in target displacement is considered. In this case, the non-linear
simulation results were obtained by looping over different values of homing time, or THOM
in Figure 3. Again, the closed form solutions, based on the linear analysis, agree reasonably
well with the non-linear simulation results generated by the Simulink model (see Figure 34).
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Figure 32:  Formula agrees closely with non-linear simulation for MDnr
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Figure 33:  Formula agrees closely with non-linear simulation for MDue
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6.2 Closed-Form Solutions for Model B

In this section, linear Model B is investigated using analytical means. The forward loop block
diagram of Model B is given in Figure 14. Applying the adjoint construction rules to this block
diagram yields the adjoint block diagram of Model B as presented in Figure 35.

In Figure 35, the outputs of two of the integrators in the block diagram are designated as
zland Z,. These are clearly indicated in the figure. From inspection of the block diagram, the

following expressions may be deduced, namely
2,=2,+t2,, z,(0)=1. (60)
Consequently, after integrating this equation, one obtains the expression
z,=tz,+C, , (61)

where C_ isaconstant. The value of this constant can be determined by noting from Figure 35
that z (t) is directly linked to the miss distance due to a heading angle error. Recall that the

time variable in this case (adjoint model) is interpreted as flight time. Thus, for zero flight
time, the following must be true, namely, z (0) = C, = 0. Consequently, equation (61) reduces

to

(62)

MD.. YT —

A

<
O
—
%
[N
Nl
\ 4
=z
=<

Figure 35:  Adjoint Model B

Hence, making use of equation (62) above, and after introducing the expression for the
weighting function defined earlier in equation (25), the block diagram displayed in Figure 35
may be judiciously manipulated into the block structure presented in Figure 36.
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For ease of analysis, the block diagram displayed in Figure 36 is re-cast into the standard
input-output form shown in Figure 37 below. Note that care must be exercised when doing
this since the block diagram contains variables from different domains, that is, from the time
domain (t) and the frequency domain (S). In the block diagram of Figure 37, two extra

variables have been included as adjoint signals of interest, namely, Z, (t) and z, (t) )

MDHA YT
<—[HA T s

+
T é +
s t 7 '

v (-1
nT
MD,, l

Figure 36:  Equivalent block diagram of adjoint Model B
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Figure 37:  Equivalent block diagram in standard form
From Figure 37, the following time domain expressions may be deduced,
1 ¢t
z4(t)=t—2j0f(77)zl(t—q)dq , (63)
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)= [, - -2y (64)
where f (1) is defined as

f(t)=L"{sW(s)} . (65)

Taking the Laplace Transform of equation (63) and (64) yields the following relationships,

9Z.6) _gw(s)z,(s) (66)
Zz(S) :1_24(3) _ Z3(S) ' (67)
S S

Furthermore, taking the Laplace Transform of equation (62), yields the relation

2,9=-48) (68

After some algebra, the following differential equation for Z1 (S) is derived,

9z, , (2 vy (s))Zl -0 . (69)
ds S

This differential equation may be readily solved using separation of variables to yield

Z.(s)= CS:ZzeJW (s)ds ’ (70)

where C2 is a constant. The value of the constant may be determined as follows. From the

block diagram in Figure 37, the expression for the miss distance due to target displacement
may be derived. This has the form

MD,, =YT*z,(t) . (71)

Therefore, for a unit step in target displacement at zero flight time, the following condition
must be true, namely,

2,(0)=1 . (72)
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Note the consistency with equation (60) above, where the same condition arose as a result of
the impulsive input.

After substituting the expression for W (S), as defined in equation (25), into equation (70)

above, and after some algebra, the following expression is obtained,

Zl(s)=c{ : } : 7)

s’|s+1/r

From equation (62)

z, (t) _ th(t) . (74)

Thus at zero flight time, the following expression is valid,

Zz (O) = t Il_r)no th(t) . (75)

Using L'Hopital’s rule and making use of equation (72) yields the expression,

_lim dz, 76
l_t—>0a ' 76)

Now, the Laplace Transform of dz1 / dt is given by

dz,| _ _ (77)
L{ ot }_szl(s) z,(0) .

However, as was shown earlier, Z, (O) = (. Hence, the above expression reduces to

dz
Ls—2+=5sZ ) (78)
{dt} SZ,(8)

Consequently, returning to equation (76) and invoking the initial value theorem leads to the
following expression

_lim . 79
1= 0 SZ,(5) - (79)

Hence, after substituting equation (70) into equation (79), and making use of equation (25), the

above expression reduces to
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Lo lim Q[ s T_ (80)

S>>0 % gir

This implies that C2 =1. Consequently, the expression for Z1 (S) is

Zl(s)=1{ > }N : (81)

s’|s+1/t

This expression may now be used to deduce the Laplace Transform of the miss distance
outputs of interest highlighted in Figure 37 above, namely, the miss distance due to target
manoeuvre,

MD(Q:m{ > }N, (82)
" s*|s+1/7

and the miss distance due to an initial heading error,

MD,,(s) = _VMZHE [s +81/J ' ®

Finally, the miss distance due to target displacement is found by making use of equation (74).
After time domain conversion, this may be expressed as

MD,, (tF) :YT*Zl(tF)/tF , (84)
where tF denotes flight time.

6.2.1 Closed Form Solutions for N’=3

Here closed form solutions are derived for a particular value of the navigation ratio, namely,

N = 3. Substitution of this value into the above expressions, and after taking the inverse
Laplace Transform, yields the following closed form solutions,

MD,.| _ 0.5t%e " (85)
nT N'=3
MD t
HA :_VMtFe—tF/r(l_i) ’ (86)
HE |, ., 2r

MDyr | _gtere (1—t—F) : (87)

YT | 2r
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These agree exactly with the corresponding formulas derived earlier and based on Model A.
Closed form solutions may also be derived for other values of N” provided they are integers.
In fact, several of these closed form solutions have been derived and are reproduced in
Appendix B. From the closed form solutions given above (and in Appendix B), it is clear that
the miss distance due to a step in target displacement is related to the miss distance due to a
heading error. This relationship is investigated further in Appendix C.

However, for non-integer values of N’, the mathematics is complex. In this case, the best
approach for a solution would be to use simulation. A Simulink representation of Model B is
displayed in Figure 38 below. As the simulation results agree exactly with those previously
produced using Model A (see Figures 29-31), only those results generated using Model B will
be presented here.

HE yic
1 1 1
<O H e : ow i e
MNT Nt Int tor2 Int t Int torl
ntegrator. ntegrator ntegrator.
g 9 9 1/VcTgo2
Outl Inl
Tgo
1
-1 P Np
Tau.s+l
minus Transfer Fen Np ve

Figure 38:  Adjoint Model B in Simulink

The miss distance due to a target manoeuvre of magnitude 3¢ (that is, output 3 in Figure 38) is
presented in Figure 39 for various values of the proportional navigation ratio. From the same
simulation, it is possible to extract similar information relating to the miss distance due to a
heading error (output 2 in the figure) and the miss distance due to a step in target position
(output 1 in Figure 38). These are presented in Figures 40 and 41 below. It is clear from these
figures that the miss distance is generally smaller as the navigation ratio increases.
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Figure 39:  Miss due to Target Manoeuvre for Various N’
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Figure 40:  Miss due to Heading Error for Various N’
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Figure 41:  Miss due to Target Displacement for Various N’

7. Higher Order Guidance System Dynamics

It has been shown that when the guidance system dynamics may be characterised by a single
time constant, then it is possible to derive closed form solutions for the miss distance.
However, it is known from reference [1] that the single time constant representation of the
guidance system seriously underestimates the miss distance. For a more realistic
representation, reference [1] recommends the use of a fifth order transfer function
representation. In this case, no closed form solution is possible. Thus the only option is to use
numerical simulation.

In this section, the fifth order binomial model, as recommended by Zarchan [1], has been
adopted. The model may be expressed in the form,

n__ NV 8)
A (@A+sz/5)° '

Using the above model, it is shown that both linear models, namely, Model A and Model B,
still produce equivalent simulation results provided that the correction term is applied to
Model A as previously proposed for the single time constant case.
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Firstly, Model A (see Figure 23) is modified to reflect the implementation of the fifth order
guidance system representation expressed in equation (88) above. After a block diagram
restructure, this new model is designated as Model A5 and is shown in Figure 42 below. Note
that, as proposed earlier in the single time constant case, an initial condition X, on the first

integrator downstream of the entry point has been included in the model to reflect the case of
a step in target displacement y_. As previously, the value of this initial condition is given by

the expression,

Ve | (59)

+ 5
s V(L —t) O v

Y,
_X S AU _
o L] L.
HA .
!
NV, |,
(L+s7/5)°

Figure 42:  Block Diagram of Model A5

Now, following the adjoint construction rules givenin [1, 3], it is an easy task to construct the
adjoint of Model A5. This is shown in Figure 43.

In a similar fashion, the alternative adjoint model based on Model B is constructed. For the
fifth order system, Model B is designated as Model B5. This is shown in Figure 44 and the
corresponding adjoint model is shown in Figure 45.

Both models were then programmed in Simulink for subsequent adjoint simulation. The
results are presented in Figure 46 through to Figure 48 inclusively. It is clear that both models
yield the same results in this case and hence any of the models may be used interchangeably
for the guidance loop analysis provided that the proposed correction strategy derived here is
adopted when using Model A.

UNCLASSIFIED
40



UNCLASSIFIED
DSTO-TR-2845

I\/IDyic
MDHA T o
+«— HA Y.
) 3 + .
1 1| 1 al [ B 5 —O—
l_ s I° s 1 Ls v - [° ] : A
) I
n, =) L
lMD v
" MDxic
- ic
NV,
(@+sz/5)*

Figure 43:  Adjoint Block Diagram of Model A5
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Figure 44:  Block Diagram of Model B5
UNCLASSIFIED

41



UNCLASSIFIED
DSTO-TR-2845

M D YT _»YT

MD, ¥ [NV

(1+s7/5)°

Figure 45:  Adjoint Block Diagram of Model B5
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Figure 46:  Miss Distance due to Target Manoeuvre for 5t Order System
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Figure 47:  Miss Distance due to Heading Error for 5" Order System
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Figure 48:  Miss Distance due to Target Displacement for 5t Order System
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8. Conclusions

In this report, attention is focussed on the models and tools often adopted for the linear
analysis of missile-target engagements in two dimensions. Following a review of the
non-linear dynamic equations describing the problem, two linear models were developed for
the linear analysis. These models are often used interchangeably in the literature for missile
guidance loop analysis. However, it is shown here that under certain initial conditions of the
state variables, the two models yield significantly different results. Hence, caution needs to be
exercised by the analyst when adopting these models for missile homing loop analysis.

Following closer analysis, a correction factor was derived which may be used to render the
two models equivalent. This correction factor was then used as the basis for deriving closed
form solutions to the problem in the case when the guidance system may be approximately
represented by a single time constant system. After carrying out the mathematics, it was
demonstrated that both models yield the same closed form solution for the particular inputs
considered.

The models were then implemented in Simulink and it was shown how they could be used for
assessment of other problems in which the closed form solutions are not available. In addition
to insights gained on system performance, another benefit of having derived the closed form
solutions to this problem was the observation that two of the analytical relationships were
indeed connected. Consequently, it was shown how this fact could be utilised for the
generation of performance data associated with the study of multiple targets using the system
response to a heading error input.

Finally, the power and flexibility of Simulink was utilised to demonstrate how easily these
linearised engagement models and their adjoints could be extended to accommodate higher
order and more complex dynamic system representations of the guidance loop.
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Appendix A: Non-linear Engagement Model in
MATLAB/Simulink
A.1l. Details of the Simulink Model
Al1l The Simulink Subsystem Models

The missile dynamics equations and the target dynamic equations are implemented in
Simulink as subsystems, as shown in the figures below.

()
VMX
— : g .
X » = » =
- ] "l s 1 s
sin minus Brod XM
o Xdot <

-
lamda

cos

0

X

A\ 4

ol

A\ 4

<| ol

)
<

cos Prodl Ydot

VMY

Figure Al. Missile Dynamics Subsystem

The Missile Dynamics Subsystem (Figure A1) contains all of the blocks required to
simulate the missile dynamics as represented by the non-linear equations given in the text.

In a similar fashion, the Target Dynamics Subsystem (Figure A2) contains all of the blocks
required to simulate the target dynamics in accordance with the target equations given in
the text. In order to accommodate a sudden change in target position, a switch block has
been included in the Simulink model. The switch, in this case, is used to simulate the
different values of the target position to be represented in the simulation at the moment of
seeker resolution in a multiple target scenario. It was necessary to insert a unit delay in the
loop in order to avoid an inherent algebraic loop condition causing the simulation to fail.
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Figure A2. Target Dynamics

The implementation of the relative dynamics is shown in Figure A3.
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Figure A3. Relative Dynamics Subsystem
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UNCLASSIFIED

F H——

(X
—>

Figure A5. DelV Subsystem

Dividel Teo

Ve

Ve

<0 {

Compare
To Zero

Figure A7. Stop Condition

DelX

2

DelY

DelVvX

Add

SO1

Prod2

4

X

Prod1

DelVY

d

A 4
X

Figure A8. Lamda Dot Subsystem

48

>

Divide

UNCLASSIFIED

LamDot

Stop Simulation



UNCLASSIFIED
DSTO-TR-2845

Note that the Relative Dynamics subsystem block shown in Figure A3 is composed of the
subsystems given in Figures A4, A5, A6 and A8. The simulation stopping condition model is
shown in Figure A7.

Al12 The Associated MATLAB Code

The missile-target engagement model represented in Simulink is controlled by a Graphical
User Interface underpinned by MATLAB code. The complete MATLAB code is listed over the
following pages.

B Editor - C:\Work 3\Reports\Two Target\Simulations\TwoD_EngageGUI.m

File Edit Text Go Cell Tools Debug Desktop Window Help oA X
1 function Twol EngageGUI Y O
2 %2 GUI for 2D Engagement Simulation E|
3 E e e e =
4 % Initialisation
5
[ % Get screen size and determine figure position to centre figure
T % ON SCreen
8- gcreenSize = get (0, 'ScreenSize'):

o - figureSize=[6&00 350]:

10 — figurePos = [

11 (screenSize (3) - figureSize(l))/2

12 (screenSize (4) - figureSize (2))/2

13 figureSize (1)

14 figureSize(2)]1:

15 %

16 % Default parameters for Target model

17 %

18 % Target Position (m)

13 — appData.XT0 = &500;

20 — appData.¥T0 = 380;

21 % Target flight path angle

22 — appData.Betal = 0;

23 % Target Manceuvre (gJ)

24 — appData.NT = 3;

25 % Target Speed (m/=)

28 — appData.VI = 300;

27 %

28 % Default parameters for Missile Model

29 % 2

TwoD_EngageGUI Ln 14 Col 20
Figure A9. MATLAB Code
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\TwoD_EngageGUI.m |
Edit Text Go Cell Tools Debug Desktop Window Help N A X

30 % Missile Position (m) -~
ghil= applata.XM0 = O;

32 — appData.¥YMO = 350;

33 % Missile Speed (m/s) =
34 - appData.VM = 1000;

35 % Mis e Time Constant

36 — applata.Tau = .3;

37 % Effective Navigation Ratio

38 - appData.Np =
30 % Heading (degrees)
40 — appData.HE

41 %2 Time to en target resolution occ

42 - appData.Thom = 1;

43 % Target Displacement when resolution occurs

44 — appData.Displace = 0

435 %

L1 3 Initial Miss Value

a7 = applata.Tmiss = 0;

48 — appData.Miss = 0;

43 % —-—— MRIN FIGURE

o = GUIfig = figure( 'Tag', 'GUIfig',

51 '"Tnits', 'pixels',

52 '"Pogition', figurePos,

53 'Name', '2D Engagement',

54 'MenuBar', ‘'none',

95 'Resize','off',...

56 ‘NumberTitle', 'off’, u

57 "Color', get(0,'DefaultUicontrolBackgroundColor')):

58 % -—— SUB PANEL - Target 3
TwoD_EngageGUI Ln 34 Cao 19

Figure A10. MATLAB Code (continued)

mulations\TwoD_EngageGUI.m
File Edit Text Go Cel Tools Debug Desktop Window Help N A X
ELil= TgtPanel = uipanel( 'Parent', GUIfig, ... Al =
&0 'Tag', 'TgtPanel',
(38 '"Units', 'pixel',
62 'Position', [30 180 250 150],
63 'ForegroundColor', [0.251 0 0.251],
64 'Title', 'T et Parameters'):; -
&5 T - Objects in Target Panel ————————————————o
66 % XT
67 — uicontrol( 'Parent', TgtPanel,
&8 'Tag', 'XTval',
] v, 'edit',
70 'Units', 'pixels',
71 "Position', [20 100 70 20], |
72 'BackgroundColox', [1 1 1],
73 'S g', appData.XTI0,
74 'Callback', @XTval_CallhackJ:
T5| = uicontrol( 'Parent', TgtPanel,
76 'Tag', 'XTvalTXT',
77 ', 'text',
78 'Units', 'pixels',
79 'Position', [40 80 30 20],
&0 {
-8 %
B2 - uicontrol ( 'Parent', TgtPanel,
B3 "Tag', 'YIval',
g4 'editc', ]
g5 '"Units', 'pixels',
26 'Posgition', [160 100 70 20],
B7 'BackgroundColor', [1 1 1], ... v
TwoD_EngageGUIL lm 71 Col 36
Figure A11. MATLAB Code (continued)
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woD_EngageGUIl.m |
File Edit Text Go Cell Tools Debug Desktop Window Help w A X
T DOCAGIOUOUCUIOL ¢ (L T I17 +-- O
a8 ' g', appData.¥TO, ke
g9 'Callback’, @YIval Callback):
a0 — uicontrol | '"Parent', TgtPanel,
91 'Tag', 'YIvalTXT',
92 "Style', 'text',
93 '"Units', 'pixels',
94 "Position", [180 80 30 201, )
95 'String
96 % Betal wi
97 — uicontrol ( "Parent', TgtPanel,
98 'Tag', 'Betal'
99 . 'edit’,
100 '"Onits', 'pixels',
101 "Fosition', [100 40 40 20],
102 'BackgroundColoxr', [1 1 1],
103 'String', appData.BetaO,
104 'Callback’, @Betal_Callback):
105 - uicontrol | '"Parent', TgtPanel,
108 'Tag', 'BetalOTxt',
107 rle', 'text',
108 'Onits', 'pixels’,
109 'Position', [60 35 30 201,
110 "Betal'}):
111 3 Target Speed
112 - uicontrol | '"Parent', TgtPanel,
113 'T
111 5 N
115 'Onits', 'pixels',
116 'Position', [100 10 40 20], ... e
TwoD_EngageGUIL Ln 96 Col 16
Figure A12. MATLAB Code (continued)

nulations\TwoD_EngageGUIl.m

File Edit Text Go Cell Tools Debug Desktop Window Help w AN

118 'String', appData.vVT, ... |

119 'Callback', @VIval_Callback); B

120 — uicontrol ( 'Parent', TgtPanel,

121

122 'Style', 'text',

123 'Onits', 'pixels',

124 '"Position', [€60 8 20 20],

125 " ")

126 % —--— S5UB PANEL - Missile |

127 - MzlPFanel = uipanel( 'Farent', GUIfig,

128 'Tag', 'MzlPanel',

129 'Units', 'pixel', .

130 'Position', [320 180 250 1501,

131 'Title', 'Missile Parameters');

132 3 Objects in Missile Panel -—-—-————————————-

133 % XMO Value

134 — uicontrol( 'Parent', MslPanel,

ale L 'XMval',

136 v, tedit',

137 '"Onits', 'pixels',

138 'Position', [20 100 70 20],

139 'BackgroundColor', [1 1 1],

140 "String', appData.XMO,

141 ack', EXMval Callback):

142 - uicontrol | 'Parent', MslPanel,

143 "Tag', 'XMvalTXI',

144 , 'text', ... —

145 'Units', 'pixels',

146 'Position’, [40 80 30 20],

147 'Strding!. TEMO'): b
TwoD_EngageGUI Ln 96 Col 16

Figure A13. MATLAB Code (continued)
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imulations\TwoD_EngageGUI.m |
Fle Edit Text Go Cel Tools Debug Desktop Window Help x| x

148 ® YMO e ~

1438 — uicontrol ( 'Parent’', MslPanel, )

150 'Tag', 'YMval',

151 'Style', 'edit',

152 'Units', 'pixels',

153 'Position', [160 100 70 20],

154 'BackgroundColor', [1 1 1],

155 'String', appData.¥YMO,

156 'Callback', @¥Mval Callback);

ASF| = uicontrol ( 'Parent’', MslPanel,

158 'Tag', 'YMvalTXT', N

159 'Style', 'text',

160 'Units', 'pixels',

161 'Position', [180 80 30 20],

162 'String', '¥MO'}):

163 % Hprime wvalue

164 — uicontrol ( 'Parent’', MslPanel,

165 'Tag', 'Nprime',

166 'Style', 'edic',

187 'Units', 'pixels',

168 "Position', [60 40 40 20],

169 'BackgroundColor', [1 1 1],

170 'S ng', appData.Np,

171 'Callback’', @Nprime_Callback] H

172 — uicontrol ( 'Parent’', MslPanel,

173 'Tag', '"NprimeT=zrt',

174 "Style', 'text', -

1TSS 'Units', 'pixels',

176 'Position', [20 35 20 201, o
TwoD_EngageGUI Ln 157 Col 38

Figure A14. MATLAB Code (continued)

imulations\TwoD_EngageGUI.m
Fle Edit Text Go Cell Tools Debug Desktop Window Help N A X
178 Position', [20 35 20 201, ... O
177 'String', 'H"''"): -
178 % Mis=ile Speed
179 — uicontrol({ 'Parent', MslPanel,
180 'Tag', "VMval',
181 le', 'edit’,
182 'pizels',
183 'Position', [60 10 40 20],
184 undColor', [1 1 1],
185 » appData.VM,
186 'Callback’', @W{val_Callback];
187 — uicontrol { '"Parent', MslPanel,
188 'Tag', 'VMvalTxt', W
189 'Style', 'text',
130 'Units', 'pixels',
191 'Poszition', [20 8 20 20],
192 g', '"VM'});
183 % idance Loop Time Constant
194 — uicontrol { '"Parent', M=lPanel,
195 'Tag', 'Tauval',
1%6 'Style', 'edit',
187 'Units", 'pixels’,
198 'Position', [180 40 40 20],
139 'BackgroundColoxr', [1 1 1],
200 'String', appData.Tau,
201 'Callback', @GLTC Callback);
202 — uicontrol { '"Parent', MslPanel, ]
203 'Tag', 'TauvalTxt',
204 'Style', 'text',
205 'Units', 'pixels', ... w
TwoD_EngageGUL Ln 186 Col 34
Figure A15. MATLAB Code (continued)
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imulations\TwoD_EngageGUl.m J
File Edit Text Go Cell Tools Debug Desktop Window Help X

208 'Position', [140 35 20 20], ... ~ B

207 'String', 'Tau'): ]|

208 % —-—— 5UB PANEL - 5im Inputs

2098 — S5imPanel = uipanel( 'Parent', GUIfig,

210 'Tag', 'SimPanel’,

211 'Units', 'pixel',

212 'Position', [30 20 250 1507,

213 ndColoxr®, [0.251 0 0.2531],

214 'Simulation Inputs'):

215

216 EF Objects in 5im Inputs Panel —-————————————————

217 k] Target Manoeuvre

218 — uicontrol { 'Parent', SimPanel,

219 'Tag', 'NIval', b

220 'Style', 'edit',

221 'Units', 'pixels',

222 'Position', [120 104 40 20],

223 undColor', [1 1 1],

224 g', appData.NT,

225 'Callback', @NTval_Callback):

226 — uicontrol 'Parent', SimPanel,

227 'Tag', 'NTvalTxt',

228 'Style', 'text',

228 'Units', 'pixels',

230 'Position', [20 100 90 20],

231 'String’, T (g"'s)"):

232 % Heading E =

233 = uicontrol( 'Parent', S5imPanel,

234 'Tag', 'HEval',

aac P Seelal Bedien v
TwoD_EngageGUI Ln 214 Col 35

Figure A16. MATLAB Code (continued)

EngageGUIl.m

File Edit Text Go Cell Tools Debug Desktop Window Help A X
= T&0 y HEVEL

235 'Style’, 'edit', ]

236 '"Units', 'pixels',

237 'Pozition', [120 73 40 20],

238 'BackgroundColor', [1 1 1],

239 'String', appData.HE,

240 'Callback', @HEval Callback);

241 — uicontrol ( 'Parent', SimPanel,

242 'Tag’', EvalTxt',

243 "Style’, '"text',

244 'Units"', 'pixels',

245 'Position’, [20 7O 20 20],

246 'String', 'HE (deg)'):

247 % Target Displacement

248 — uicontrol ( 'Parent', SimPanel,

243 'Tag', 'Disval’', ... T

250 'Style', 'edit',

251 'Units', 'pixels',

252 'Position', [120 42 40 20],

253 'BackgroundColor', [1 1 1],

254 '"String', appData.Displace,

255 'Callback', @Disval Callback);

256 — uicontrol | 'Parent', SimPanel,

257 'Tag', 'Disva t',

258 'Style’, 'text',

259 'Units', 'pixels',

260 "Position', [20 40 %0 20], |

261 'String', 'Displace (m)'):

262 x Time at h target resoclution oc

263 — uicontrol | 'Parent', SimPanel, ... ¥

TwoD_EngageGUL Ln 241 Col 36

Figure A17. MATLAB Code (continued)
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woD_EngageGUI.m

File Edit Text Go Cell Toole Debug Desktop Window Help a A X
263 — uicontrol( 'Parent', SimPanel, ... s I
264 'Tag', 'Thomval', 0
265 "Style’', 'edit',

266 'Units', 'pixels',

267 "Position', [120 12 40 20],

268 'BackgroundColor', [1 1 1],

269 'String', appData.Thom,

270 'Callback', @Thomwval Callback);

271 — uicontrol { 'Parent', S5imPanel,

272 'Tag', 'ThomvalTxt',

273 'Scyle’, 'text',

274 '"Units', 'pixels',

275 'Position', [20 10 20 20],

276 'Scring', THOM (=)"):

277 EF PUSH BUITON -—---—-——————————————

278 — uicontrol( 'Parent', GUIfig,

279 'Tag', 'RunSim', ... b |
280 'Style', 'pusl atton',

281 'Units', 'pixels',

282 'Position', [400 30 100 50],

283 'String', 'Run Sim’',

284 "Callback', @RunSim Callback);

285 % CEPT COUTPUIS —————-———-——————————

286 % Time at simulation stops ]
287 — uicontrol( nt', GUIfig,

288 'Tag', 'Tmissval',

289 "Style’, 'edit', ... -
290 'Units', 'pixels',

291 "Position', [350 120 50 20],

e . e A ] et 1 1 11 4

TwoD_EngageGUL Ln 272 Col 29

Figure A18. MATLAB Code (continued)

imulations\TwoD_EngageGUlL.m
Fle Edit Text Go Cell Tools Debug Desktop Window Help oA X
T FosIoIon 5oL T Tr s
292 wndColor', [1 1 1], ... ™~ -
293 , appData.Tmiss,
294 'Callback’', @Tmissval_Callback]:
sl = uicontrol( 'Parent', GUIfig,
298 'Tag', 'ImissTxt',
297 "Style', 'text',
298 'Units', 'pixels',
293 "Fosition', [348 95 50 20],
300 '"String', 'Time (=)"):
301 % Mizs Distance
302 - uwicontrol({ 'Parent', GUIfig,
303 'Tag', 'Missval’,
304 'Style', 'edit',
305 'Units', 'pixels',
306 'Position', [450 120 &0 20],
307 'BackgroundColor', [1 1 1],
308 ng', appbata.Miss,
309 'Callback’', @Missval_Callback]; b |
Sl uicontrol ( 'Parent', GUIfig,
311 'Tag', 'Mi==sT=xt',
312 '"Style', 'text',
313 'Units', 'pixels',
314 "Position', [447 85 70 207,
315 '"String', 'Miss Dist (m)"'):
316
317 T ———————— End of Parameter Entry For
318 % Save application data n
sl = guidata (GUIfig, appData) ;s
320 — end a
TwoD_EngageGUI Ln 302 Col 34
Figure A19. MATLAB Code (continued)
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imulations\TwoD_EngageGUl.m |
Edit Text Go Cell Tools Debug Desktop Window Help N A X
=]
% Target X Position Callback )
function XTval Callback (hObject,eventdata)
- appData = guidata (hObject):
- handles = guihandles (hCbject);
- XT = strZ2numiget (handles.XTwval, 'String')) s
- appData.XT0 = XT;
- set (handles.XTval, 'string',num2str (XT))
- guidata (hCbject,applData);
- end
% Target ¥ Position Callback
function ¥YTval_ Callback (hObject,eventdata)
- aprData = guidata (hCbject) ;|
- handles = guihandles (hCbject):
- ¥T = str2num(get (handles.¥Ival, 'String')):
- appData.¥I0 = ¥T;
= zet (handles.¥Tval, 'string',numd=str (YT))
= guidata (hCbject, applata)
- end
% Target angle Betal Callback —
function Betal_Callback (hObject,eventdata)
- appData = guidata (hCbject):
- handles = guihandles (hCbject);
= Beta = str2num(get (handles.Betal,'String'));
- appData.Betald = Beta;
- set (handles.Betcal, 'string',num2str (Beta)) s
- guidata (hObject, appData) ;
- end
% Target Speed Callback
50 functinn ¥Twal CallhackihOhiect.eventdatal b
TwoD_EngageGUI [ YTval_Callback 'Ln 333 Col 33
Figure A20. MATLAB Code (continued)

mulationsiTw

Edit Text Go Cel Tools Debug Desktop Window Help A A X
T - L
350 function VIval Callback (hObject,eventdata) A
351 — applata = guidata(hCbject);
352 — handles = guihandles (hCbject);
353 = Speed = str2num(get (handles.VIval, "String'));
354 — appData.VT = Speed;
355 = set (handles.VIval, "string',num2str (Speed) ) ;
356 — guidata (hCbject, appData) ;
357 — end
358 3
359 % Missile X Position Callback
360 function XMwval Callback (hObject,eventdata)
361 — appData = guidata(hCbject):
362 — handles = guihandles (hCbject):
363 — ¥M = strZ2num(get (handles . ¥XMval, 'String')):
364 — appData.XMO = XM;
365 — zet (handles,¥Mval, 'string',numlstr (XM));
386 — guidata (hCbject, appData) ;
387 — end
368 % Missile Y Position Callback
389 function YMval Callback(hObject,eventdata)
370 — appData = guidata (hCbject): =
31 - handle=s = guihandles (hCbject):
372 — ¥YM = scr2num(get (handles.¥YMval, 'String')):
373 — appData.YMO = ¥M;
374 — set (handles.¥YMval, 'string',num2scr (YM)):
375 — guidata (hObject, appData) ;
376 — end
377 % Effective MNavigation Ratio Callback
378 function Mprime Callback(hCbject,eventdata) v

TwoD_EngageGUI f VTval_Calback |Ln 356 Col 31

Figure A21. MATLAB Code (continued)
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_EngageGUI.m |

Fle Edit Text Go Cel Tools Debug Desktop Window Help A X

378 function Mprime_ Callback(hObject,eventdata) ¥ (|

379 — appData = guidata (hCbject): )

380 — handles = guihandles (hObject):

381 — Wav = strZnum(get (handles.Nprime, 'Sctring')):

382 — appData.Np = Nav;

3R = set (handles.Nprime, 'string',num2str (Nav)):

384 — guidata (hCbject, appData) ;

3H5 = end

386 ¥ Missile Speed Callback

387 function VMval Callback (hCbject,eventdata)

388 - appData = guidata (hCbject);

389 - handles = guihandles (hCbject):

390 — Speed = strZnum(get (handles.VMval, 'String'));

391 — appData.VM = 5pEEd:|

203 = set (handles.VMval, 'string’', num2str (Speed) ) ;s

=R = guidata (hCbject, appData) ;

394 — end

335 %

396 % Target Manoeuvre Callback

387 function NTval_ Callback (hCbject,eventdata)

398 — appData = guidata (hCbject);

399 - handles = guihandles (hCbject):

400 — TM = str2num(get (handle=s.NIwval, "String'})): =

401 — appData.NT = TM:

402 — set (handles.NTval, 'string’',num2str (TH) ) ;

403 — guidata (hCbject, appData) ;

404 - end

405 % Heading Error Callback

408 function HEval Callkack (hObject,eventdata)

407 = poData = guidata(hObiect): M

TwoD_EngageGUI / VMval_Calback |Ln 391 Col 26

Figure A22. MATLAB Code (continued)

woD_EngageGUIl.m
Edit Text Go Cell Tools Debug Desktop Window Help ¥ A X
407 - appData = guidata (hCbject): o] "
408 — handles = guihandles (hCbject):
409 — HdgErr = str2num(get (handles.HEval, 'String"));
410 - appData.HE = HdgErr;
411 — set (handles.HEval, "string’',num2scr (HdgErr)) ;
412 — guidata (hCbject, appData) ;
413 - end
414 % Target Displacement Callback
415 function Disval_Callback (hCbject,eventdata)
416 - appData = guidata(hCbject):;
417 - handles = guihandles (hCbject):
418 — Disp = str2num(get (handles.Disval, "String')):
419 — applata.Displace = Disp;
420 — set (handles.Disval, 'scring’,num2scr (Disp) )
421 — guidata (hCbject, appData) ;
422 - ernx
423 % Homing Time Callback
424 function Thomval_ Callback (hCbject,eventdata)
425 - appData = guidata(hCbject):;
4286 — handles = guihandles (hCbject):
427 — Thom = str2num(get (handles.Thomval, 'String”));
428 - appData.Thom = Thom;
429 — set (handles.Thomval, 'string', num2str (Thom) ) ;
430 — guidata (hCbject, appData) ; =
431 - end
432 % Guidance Loop Time Constant Callback
433 function GLIC_ Callback(hCbject,eventdata)
434 - appData = guidata(hCbject):;
435 — handles = guihandles (hCbject): -
TwoD_EngageGUI / Disval_Calback |Ln 422 Co 4
Figure A23. MATLAB Code (continued)
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EngageGUI.m

Edit Text Go Cel Tools Debug Desktop Window Help A X
- Tau = str2num(get (handles.Tauval,'String')): |

- appData.Tau = Tau;

- set (handles.Tauval, 'string',numZstr (Tau) ) 2
- guidata (hCbject, applata) ;

- end

L Simulation Callback

function RunSim Callback(hObject,eventdata)
- appData = guidata (hCbject): %%
- handles = guihandles (hObject): 3

%
% Script to run the 2D missile/target engagement using Prop Nav guidance

'

% Parameters
- Np = appData.Np:
- HE = appData.HE/57.3;
- Thom = appData.Thom;
- Displace = appData.Displace:
- Tau = appData.Tau;
- NT = appData.NI*®9.8;

% Initial Target Data
= XTO = applData.XT0;
- YIO = appData.YIO: L
- ¥T1 = YTO + Displace; —
= VI = appData.VI;
- Betal = applata.Betald/57.3;

%  TIpitial Missile Dat b

TwoD_EngageGUI f Disval_Callback |Ln 422  Col 4

Navigation constant

Heading Error
Time to go for step in tgt displacement
S5tep in tgt displacement

Msl Guidance Loop time constant

Wod o e e o

Tgt maneuver

Figure A24. MATLAB Code (continued)

mulations\TwoD_EngageGUl.m

Cell Tools Debug Desktop Window Help u A X
466 — ¥M0 = appData.XMO; ~ 4
487 — YMO = appData.¥YMO;
468 — VM = appData.VM;
489 % Relative Geometry
470 — DelX0 = XTO - XMO;
471 — DelY0D = YTO - YMO;
472 — Lamdad = atan2 (Del¥0,DelX0);
473 — L = gsin(VI*sin(Betal+Lamdal) /VM);
474 — Thetal = Lamda0l + L;
475 — VMXO = VM¥*cos (Thetal + HE):;
476 — VMY0 = VM*szin(Thetal + HE):
477 % Load up these initial parameters into the Simumlink model
478 % make sure the Simulink model is open
479 — SimMod = 'TwoDMod':
480 % set time cCOnNSTant|
481 — Den = ['[" numZ2str(Tau) " 11"']:
482 — set_param([5imMod '/RE'], 'Numerator','[1]',.

483 'Denominator',Den);

434 % set tgt man value

485 — set_param([SimMod ' 1,"Value',num2=str (NT)):

486 % set parameters in Target Dynamics subsystem

487 — set_param([SimMod '/Target Dynamics/X'],'InitialCondition’',num2str(XTIO0));
488 — zet_param([SimMod ' rget Dynamics/Beta']

489 '"InitialCondition',numZstr (Betal))

490 — set_param([SimMod ' e', numZstr (YI0)) ;

491 — set_param([SimMod ° ] Value',num2scr (YT1))

432 — set_param([SimMod ° 1,"'const",num2str (Thom) ) ; = =
493 — set_param([SimMod ° lue',num2scr (VI)) s

434 % set parameters in Missile Dynamics subsystem

...D_EngageGUI [ Runsim_Calback |Ln 480 Col 20

Figure A25. MATLAB Code (continued)
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B Editor - C:\Work 3\Reports\Two Target\Simulations\TwoD_EngageGUI.m
File Edit Text Go Cell Tools Debug Desktop Window Help N A X
197 T SeC parameLers i1n Missile Dynamics SubsyScen -]
495 — set_param([SimMod '/Missile Dynamics/Xdot'l,... L
494 '"InitialCondition',numZstr (VMXO))
497 — set_param([S5imMod '/Missile Dynamics/Ydot'],...
4938 '"InitizlCondition',num2scr (VMYO)):
499 — set param([SimMod '/Missile Dynamics/X'J,...
500 "InitialCondition',num2str (XMO));
501 — zet_param([SimMod '/Missile Dynamics/Y'],...
502 'InitialCondition',numZ=stxr (YM0O)) ;
503 % =z=et parameters in Relatiwve Dynamics subsystem
504 — set_param([S5imMod '/Relatiwve Dynamics/Np'],'Gain',numlZstr (Np));
505 %
506 % Run the Simunlink Model
07 = [tout, xout, yout] = sim(5imMod);
208 %2 plot the traj of the mis=sile and target
509 — figure;
=l e plot (yout {:,1),yvouci{:,2), "'&—"):
211 = hold on
517 = plot (yout(:,3),youc(:,4),'z-"):
513 % plot m=l accel
514 — figure;|
515 — plot (tout, yout (:,5)/5.8);
51é % calculate MD
51T = Mi==s = abs(yout (end,4)-vout (end,2)): i
518 = Tmi=ss = tout (end) ;
5138 % set wvalues in GUI
520 - set (handles.Tmissval, "string’,numZstr (Tmiss) ) _
521 — set (handles.Missval, 'string',numnZstr (Miss) ) ;
522 — guidata (hObject, applata) ; =
223 end b
...D_EngageGUI / RunSim_Calback Ln 514 Col &
Figure A26. MATLAB Code (continued)
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Appendix B: Closed Form Solutions for Single Time
Constant Guidance System

If the guidance system can be approximated by a single time constant parameter with transfer
function of the form, (see equation (25) in the text)

W= N (B1)
S(1+ 1)

then, for integral values of N, it has been shown in the text how to derive useful closed form
solutions to the linear engagement problem. In particular, typical closed form solutions have

been provided therein for the specific case when N = 3. These analytical expressions are
useful when producing design curves during the preliminary stages of a guided missile

program. In this appendix, closed form solutions for integral values of N in the range [4 - 6]
are provided.

B.1. Solution for N’ =4

MD, | _t -[F,T[l_tp} | (B2)
n. .. 3r
L Y 4 L By (B3)
HE |,., T 67’
MDYT —atlr 1--F+ t'i , (84)
YT |, T 67°
B.2. Solution for N' =5
MD, | _teuify 2 L | (B)
n. | 3r 127°
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|\/IDHA :_VMtFeftF/r 1_3£+t7F_ tF ’ (B6)
HE |, .. 2t 2t* 247
MD,|  _nfq Bttt | (B7)
YT |, 2t 2t° 247°
B.3. Solution for N" =6
MDy| _tegunfy e L | (B8)
N, .. r  47° 607°
MDHA :—VMtFe’tF” 1-— ZtF +ti_t7F_|_ tF ’ (B9)
HE |, . r t° 6r° 1207°
MDYT :e—tF/r 1_ 2tF +£_£+ t::1 ’ (BlO)
YT |y r t° 6r® 1207°

The above closed form solutions have been verified against the Simulink models.

It is interesting to note from the above expressions that the miss distance due to a target
displacement appears to be directly related to the miss distance due to a heading error in the
following way,

M DYT
YT

1 MD,

_+ MU (B11)
t. (-V,HE)

N'=n

1
N'=n

where N is an integer greater than 2. In fact, through simulation of the adjoint models in
Simulink, it was straightforward to verify that this relationship holds true even for non-
integer values of N and also for higher order systems such as the fifth order binomial
system. Further investigations of this relationship are carried out in Appendix C.
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Appendix C: Alternative Approach to Performance
Prediction of Miss Distance due to a Step in Target
Displacement

The relationship given in equation (B11) expresses the fact that the miss distance due to a step
in target displacement, for a single time constant system, may be determined by knowing the
miss distance due to an initial error in heading angle. That is, imposing an initial heading
angle on the interceptor of the form

HA= "1 (€1

and assuming there are no other inputs to the system, then the miss distance output for the
problem is that due to a step in target displacement of magnitude YT . This is certainly true of
the closed form solutions given in the main text and in Appendix B above. The investigation

here will focus on whether this is true for non-integral values of N and also for higher order
guidance systems.

Let the initial heading angle condition, equivalent to equation (C1) above, be denoted by
HAyr. Imposing this condition on the first integrator in Figure C1 is tantamount to imposing a
step, of magnitude YT, in target displacement condition on the second integrator in the
diagram.

C.1. Linear System Investigations

For the linear analysis, either Model A or Model B may be used in this case as they have been
shown to produce equivalent results when the input is heading error. For the present
investigation, Model A is employed. The Model A forward loop block diagram incorporating
the HAvr initial condition, as expressed in equation (C1), is presented in Figure C1.

MD = y(t.)

n:O + y y 1 yI T

+ 1
! > e "o O .
f L
nL YT s |
t
NV, |«

Figure C1:  Model A with HAyr condition
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The adjoint model of Figure C1 may be easily constructed using the adjoint construction rules
and is displayed in Figure C2.

+ - +
YT |, 1 P 1 + 1 P =
I s [ s 1 v [ r N
+
T
s
YT NVC

Figure C2:  Adjoint of Model A with HAyr condition

The adjoint model is employed here because of the desire to compare the miss distance
profiles in only one run. The Simulink representation of the adjoint block diagram for carrying
out the adjoint simulation is shown in Figure C3 below.

MDyic

1 1 1
3 - - - ]

MDNT Nt itz int Il

n n n TG

MDxic INCITF
4>{—1 }{Np ){Vc
Minus Np Ve

Figure C3:  Simulink Representation of Adjoint Model A

In this case, output channels 1, 2 and 4 shown in Figure C3 are of interest. Output channels 1
and 4 provide the data to compute the miss distance response to a step in target displacement
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of magnitude YT=yic while output channel 2 provides the data for the same response via the
indirect approach proposed here using the HAyr condition.

The miss distance results generated for the case of a single time constant system are compared
in Figure C4. For selected values of the navigation ratio, the plots compare the miss distance
due to a target displacement ( YT=yic ) derived using the conventional approach with that
using the HAvyr approach. It is clear from the figure that the results agree even if the value of
N is non-integral. In Figure C5, simulation results generated on the basis of a fifth order
guidance system are presented. Again, the HAyr approach is seen to agree favourably with
the conventional approach to the miss distance problem for this case.

In conclusion, for a linear guidance system, the miss distance performance due to a step in
target displacement may be determined on the basis of an appropriate heading error input
thus eliminating the need to model the target displacement effect conventionally. This
approach also obviates the need to incorporate the correction factor in Model A as outlined
earlier in the text.

60

MDYT - conventional
50 ° MDYT - using HAYT |
40 - Target Displacement = 60 m |

17:0.3

MDYT (m)

_lo | | |
0 0.5 1 15 2

Flight Time (s)

Figure C4:  Comparison of HAyr approach with direct approach for single time constant system
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60

MDYT - conventional
S0+ e MDYT-using HAYT | |

40 Target Displacement = 60 m 7
Fifth Order System, t = 0.3

30+

20+

10

MDYT (m)

-40 | I |
0 0.5 1 1.5 2

Flight Time (s)

Figure C5:  Comparison of HAyr approach with direct approach for fifth order system

C.2. Non-linear System Investigations

In this section, the accuracy of the HAyr approach is investigated in the context of the non-
linear simulation model. Figure C6 shows the typical trajectories involved when
implementing either the conventional approach or the HAyr approach. As stated earlier, the
conventional approach here means applying the target displacement initial condition at a
certain time to go before intercept while the HAyr approach means applying an equivalent
initial condition in accordance with equation (C1). In order to implement the HAyr condition,
it is necessary to estimate the intercept time at the start of the simulation. In this regard, the
following approximation is utilised, namely, tF =R/ VC . In Figure C7 is presented the miss

distance profile generated by carrying out multiple runs of the non-linear simulation model
employing the HAvyr initial condition. All other inputs are set to zero in this case.
Superimposed on this plot is the corresponding miss distance profile produced by the linear
model. The results agree favourably.
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a0l | T Conwentional Response
I HAYT Response /
400+ _ g
V,, = 1000 m/s J/
V. =300 m/s
390} | 't ya 1
- t=03,N=3
£ 380 Displace = 60 m /
I3 | | THOM=5s Target
g /
@ 370} / 1
[%2]
o
(@)
360 e \Missile |
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30— ]
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330

0 1000 2000 3000 4000 5000 6000
Downrange (m)

Figure C6:  Comparison of Conventional and HAyr based Trajectories

60

O Non-Linear
Linear

Target Displacement = 60 m |
N'=3,7t=0.3

Vm = 1000 m/s
Vt = 300 m/s |
Using HAYT condition

MDYT (m)

Flight Time (s)

Figure C7:  Comparison of Linear and Non-linear Results using the HAyr Condition
Next, the comparison of the HAvyr based results with those generated using the conventional

approach is made, using the non-linear model outlined in Section 2 in the text. All inputs
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except the initial target displacement are set to zero in this case. The simulation results are
shown in Figure C8 below.

The non-linear simulations are repeated in order to examine the effects on the miss distance
results due to other input conditions, such as target manoeuvre and heading error. The total
miss distance results are shown in Figure C9 below. Note that these results are based on a
target displacement of 60 m.

60
O < HAYT Approach
50 L O Conventional Approach i
Vi = 1000 m/s
40 V, = 300 m/s 1
0 1=03,N=3
~ 30|~ Displace =60 m ||
£ THOM =5s
|_
a
S 20 i
Q
10+ |
®)
Or |
-10 I I | | |
0 1 2 3 4 5 6

Flight Time (s)

Figure C8:  Non-linear Results Comparing Conventional and HAyr Approach (Single Input)

Finally, using the non-linear simulation model, the effect of different target displacements on
the total miss distance results is investigated. The plots are summarised in Figure C10 and
compare the miss distance profiles generated using the conventional approach with those
generated using the HAyr approach. It is clear from the plots that the proposed HAyr
approach to the target displacement problem leads to acceptable results in this case.
Moreover, for flight times larger than 1 second, the plots indicate that the PN guidance law
works well in eliminating errors due to the initial target displacement and therefore the miss
distance is insensitive to the magnitude of the initial target displacement. However, if the
homing time is less than 1 second, the miss distance only reduces as the magnitude of initial
target displacement is reduced.
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Non-linear Results Comparing Conventional and HAyr Approach (Multiple Inputs)
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