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ABSTRACT  

 
In this report, techniques generally employed in the analysis of intercept guidance problems are 
reviewed. From the governing non-linear equations describing such problems, two basic linear 
models are derived. Traditionally, these linear models are utilised as a basis for preliminary 
intercept engagement studies. Under certain input conditions, the two models are mathematically 
equivalent and, hence, have been used interchangeably by weapons analysts to yield appropriate 
design and performance data in support of their programs. However, for a specific set of initial 
conditions, which includes a very important class of practical problems that may be assessed with 
the use of these models, it is noted herein that one of these linear models produces incorrect 
performance data when compared to a non-linear simulation of the engagement. In contrast, the 
other model produces consistent results with those generated by the non-linear simulation 
regardless of the initial conditions considered. To remedy this discrepancy, the necessary 
mathematics are derived to bring the two formulations into alignment for any form of the initial 
conditions and inputs to the system. Consequently, this leads to a consistency in the 
corresponding adjoint models which are constructed from these linear models, thus ensuring the 
generation of correct output data regardless of which model is employed by the analyst.  
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Executive Summary  
 
 
In this report, the missile-target engagement problem is analysed. As part of the analysis, 
the non-linear governing equations are reviewed for motion in a single plane. These non-
linear equations are employed for two purposes. Firstly, the equations form the basis of a 
non-linear simulation program developed in Simulink. This Simulink model is controlled 
and executed via a graphical user interface specifically developed as an aid for the 
weapons analyst to study the engagement problem. Secondly, the non-linear equations are 
utilised as a basis for linearisation and, hence, the derivation of an approximate linear 
model of the engagement. Two different formulations of the linear model are derived. 
These are designated as Model A and Model B in the report.  
 
Although both models are generally used interchangeably in the literature for guided 
missile homing loop analysis, it is demonstrated herein that, under certain input 
conditions, care needs to be exercised when using one of these models, Model A, for 
performance analysis. In order to ensure that both models yield the same performance 
data for all input conditions considered, a correction factor is derived. This correction 
factor needs to be included in the form of an added initial condition on one of the states in 
the state space representation of Model A. Simulation results show that the two models 
are in agreement when this correction factor is applied. Knowledge of this fact is 
important to ensure that analysts generate correct performance data when using linear 
techniques such as the adjoint method. The adjoint model is constructed from a 
knowledge of the forward linear model, that is, Model A or Model B, and is traditionally 
employed by analysts as part of the solution process. 
 
To gain further insight into the nature of the missile-target engagement problem and the 
parameters that influence performance, also included in this report is an analytical 
treatment of the problem. It is well known that, when the missile guidance dynamics is 
represented by a first order lag (single time constant system), then the linear differential 
equations describing the intercept problem are readily amenable to analytical treatment. 
Consequently, an analytical investigation of each model (A and B) is carried out for the 
range of input conditions considered herein. The resulting closed form solutions from each 
model are compared and are shown to be mathematically equivalent for all input 
conditions considered provided that Model A has the proposed correction factor 
implemented. For simulation purposes, the corresponding adjoint model of Model A and 
Model B are constructed and then implemented in Simulink. As with the analytical results, 
outputs from the two models are shown to be in agreement. Finally, the models are 
extended to represent more realistic guidance system dynamics (fifth order system) and 
simulation results are generated and compared.  
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Finally, a special relationship linking two of the derived miss distance formulas is noted 
and explored further. This relationship highlights a connection between the miss distance 
due to an initial target displacement and that due to an initial heading error in the context 
of the linear analysis. Following verification using linear simulation, a formula based on 
this relationship is derived and proposed as a means for predicting performance data of 
more complex linear systems. This formula may also be used in connection with the non-
linear simulation model for generating approximate miss distance profiles due to the 
effects of a step in target position prior to intercept. A step in target position typically 
arises in problems associated with the seeker resolution of the target in a multi-target 
scenario. It may also arise in the case of a single target scenario. For this case, the missile 
may be on a collision course with the predicted intercept point (PIP) of the target. 
However, at the time of seeker turn-on, the PIP may not necessarily coincide with the 
actual target position.  
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1. Introduction  

The equations describing the dynamics and geometrical interactions between an interceptor 
and its target are generally non-linear and complex and are usually beyond the scope of 
analytical investigations. Therefore, they are solved approximately using computer 
simulation. Simulation provides the missile analyst with a basic capability for assessing the 
performance and behaviour of the interceptor under varying conditions of the engagement 
and can provide answers to questions such as, “What is the overall effect on miss distance due 
to a sudden shift in target direction?”  However, to gain critical insight into the nature of such 
interactions and to identify key parameters that may affect the performance and behaviour of 
the interceptor, engineers often make use of simplifying assumptions in order to linearise the 
governing equations. Once in linear form, the engagement equations are more easily tackled 
using established linear techniques. Two such techniques are the adjoint simulation method 
and the covariance analysis method.  
 
In this report, we first review the engagement model based on two dimensional (2D)  
non-linear dynamics. Following this, we make use of linearisation to reduce the equations to a 
form amenable to linear analysis. Using standard block diagram algebra, these linear 
equations are then used to derive two basic models, referred to as Model A and Model B, 
which may be used as the basis for the linear analysis of planar missile/target engagements. 
In the literature, these models are often used interchangeably for preliminary analysis of the 
performance of guided missile systems [1-6]. However, as is demonstrated herein, caution 
must be used when adopting one of these models under certain initial conditions of the state 
variables. It is shown that the mathematical equivalence of the two block diagram topologies 
representing the models is dependent on the nature of the initial conditions imposed on the 
states of the system. For example, if the initial condition is based on an initial heading error in 
the missile, then both models yield the same miss distance results. However, if the initial 
condition stems from a step in target displacement (this condition is used to study missile 
performance against multiple targets), then the two block diagram topologies, as currently 
employed in the open literature, will lead to miss distance results that differ significantly. 
Consequently, applying the adjoint method to these two systems will also give different 
results. To correct this inconsistency, the necessary mathematics is derived to bring the two 
formulations into alignment for any of the initial state conditions. This then leads to 
consistency in the associated adjoint models regardless of which linear formulation is pursued 
by the analyst. In addition, closed form solutions of the miss distance variation in terms of 
flight time have been derived for the case when the missile guidance loop may be 
approximated dynamically by a first order lag term. Finally, simulation results and design 
curves are generated for more realistic guidance systems. 
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2. Non-linear Engagement Equations  

2.1 Planar Engagement Model 

Consider a missile-target engagement under the following assumptions; the engagement is 
confined to the X-Y plane, the force due to gravity is ignored, and the missile velocity and the 
target velocity remain constant. The geometry of the engagement is depicted in Figure 1. 
 
The non-linear differential equations describing the motion of the target are [1], 
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where   defines the target position, is the constant target speed, is the target 
acceleration while 

),( TT YX TV Tn
  refers to the target flight path angle as shown in Figure 1. The dots over 
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Figure 1. Engagement Geometry 
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Similarly, the non-linear differential equations describing the motion of the missile are, 
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Here,  defines the instantaneous position of the missile while are the 

components of its velocity vector. Furthermore,  denotes the missile commanded 

acceleration and 
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  is the line of sight angle as shown in Figure 1. The initial conditions are 

given by , , 
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 and )sin()0(  HELVV MMY
 where 

denotes the constant missile speed, is the missile lead angle associated with the collision 
triangle and HE  refers to the initial deviation of the missile from the collision triangle 
commonly known as the heading error. The lead angle  can be found by application of the 
law of sines on the collision triangle yielding the formula  
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To find the missile acceleration components, it is necessary to determine the components of 
the relative missile-target separation. Let the components of the relative missile-target 
separation be expressed as 
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Consequently, the range R  between missile and target is given by 
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while the line of sight angle   is given by 
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The line of sight rate can be easily derived from this expression by differentiating with respect 
to time, giving 
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The closing velocity is defined as the negative rate of change of the missile target separation, 
that is, , which, after using eq (11) above, leads to the relation, RVc
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Consequently, the magnitude of the missile guidance command  can be found from the 

definition for proportional navigation guidance,  
C
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where 'N is a given constant. 
 
If we model the actual acceleration of the missile  by a first order lag term, then  
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A 2D simulation model is easily developed using the above equations. For this study, 
MATLAB/Simulink was used to develop the simulation model. The top level Simulink model 
is presented in Figure 2. The details of each subsystem of the model are given in Appendix A. 
Figure 3 presents a screen shot of the Graphical User Interface (GUI) used in this study. The 
GUI was specifically designed as an aid in running the simulation. The MATLAB software 
underpinning the construction of the GUI is also presented in the Appendix.  
 
At the GUI level, the missile and target parameters may be entered by the analyst. On the left 
of the GUI, the analyst can enter initial target position, target speed and flight path angle. On 
the right of the GUI, the analyst can enter initial missile position, missile speed, effective 
navigation constant and guidance loop time constant. Inputs for the simulation include target 
manoeuvre (NT), error in the initial heading angle (HE) and jump in the target position 
(Displace) at some time (THOM) prior to intercept. 
                 

UNCLASSIFIED 
4 



UNCLASSIFIED 
DSTO-TR-2845 

5

NL

4

YT

3

XT

2

YM

1

XM

Nt

Tgo

XT

YT

VTX

VTY

Target Dynamics

Vc

Stop Condition

XM

YM

XT

YT

VTX

VTY

VMX

VMY

lamda

Nc

Vc

Tgo

Relative Dynamics

29.4

NT

lamda

NL

XM

YM

VMX

VMY

Missile Dynamics

1

0.3s+1

AP

 
Figure 2  Two Dimensional Engagement Model in Simulink 

 

 
Figure 3. Graphical User Interface to run the 2D Engagement Model 
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2.2 Simulation Results 

The Simulink model given above may now be used to conduct simulation studies of the 
missile/target engagement problem. The simulation studies will be based on the following 
three simulation inputs; 
 

(a) a step in target manoeuvre 
(b) an error in initial heading angle  
(c) a step in target position 

 
Interest in (c) above stems from the analysis of multi-target scenarios as is described in  
Section 2.2.3.  
 
 
2.2.1 Step in target manoeuvre 

Consider the case in which the only disturbance is a 3g target manoeuvre starting at time 
.0t   The nominal values for target and missile parameters may be easily identified in the 

GUI given in Figure 3. In this scenario, the missile and target are initially on a collision course 
and flying along the downrange component of the earth fixed co-ordinate system. Thus, the 
target velocity vector is initially along the line of sight and, at first, all 3g of the target 
acceleration are perpendicular to the line of sight. However, as the target manoeuvres, the 
magnitude of the target acceleration perpendicular to the line of sight reduces due to the 
turning of the target. 
 
Sample missile/target trajectories for this case with effective navigation ratios of 3 and 5 are 
shown in Figure 4. It is clear from the figure that the higher effective navigation ratio causes 
the missile to lead the target slightly more than the lower navigation ratio case. 
 
Figure 5 presents the respective missile acceleration profiles obtained from the simulations. 
Note that, although both acceleration profiles are monotonically increasing for most of the 
flight, the higher effective navigation ratio case leads to less acceleration requirement of the 
missile towards the end of flight. Also noteworthy from the plot is the observation that the 
peak acceleration required by the missile to hit the target is significantly higher than the 
manoeuvre level of the target (3g). 
 
2.2.2 Heading error 

Next, consider the case in which the only disturbance is a 20 degree error in the initial heading 
angle, that is, HE = -20 deg. Again the simulation was run for two values of the effective 
navigation ratio. Sample trajectories for effective navigation ratios of 3 and 5 are presented in 
Figure 6. From the figure, it is apparent that initially the missile is flying in the wrong 
direction because of the heading error. Gradually the guidance law forces the missile to head 
towards the target. It is interesting to note from the figure that the larger effective navigation 
ratio enables the missile to remove the initial heading error more rapidly, thus leading to a 
tighter missile trajectory in this case. 
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In Figure 7 is plotted the resultant missile acceleration profiles for each case. From the figure, 
it is observed that the faster removal of heading error in the higher effective navigation ratio 
case is associated with larger missile accelerations at the beginning of flight 

                           
Figure 4:    Missile performance against manoeuvring target 
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Figure 5:    Acceleration profile for Target Manoeuvre Case 
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Figure 6:     Missile performance when initial heading angle is in error 
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Figure 7:     Missile performance when initial heading angle is in error 
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2.2.3 Step in target position 

The non-linear engagement simulation program may be used to analyse the missile response 
to a sudden jump in target position at a certain time prior to intercept. This is useful in 
supporting simulation studies concerning the effects of seeker resolution on the performance 
of the missile when confronted with multiple targets. 
 
Consider the scenario shown in Figure 8 [1]. On the left is the missile engaging two targets 
which are flying in formation. Both targets have the same speed and are separated by a 
spacing of metres. It is assumed here that the power centroid is located half way between 
the targets. In this case, the input parameter, “Displace” in the GUI of Figure 3 is equivalent 
to  metres. For the simulation, it is assumed that the missile is initially on a collision 
course with the power centroid. At a certain time to go before intercept with the power 
centroid, seeker resolution occurs and the missile is presented with the true target, that is, 
Target 1. At this time, it will appear to the missile as if the target position jumps from the 
power centroid to Target 1. From a simulation perspective, it is only necessary to model the 
target currently seen by the missile. Therefore, for most of the flight, the missile will be 
guiding on the power centroid and for the rest of the flight, following seeker resolution, the 
missile will be guiding on Target 1. This is represented in the simulation by the target position 
being updated by a step in target displacement at a given time to go prior to intercept 
(THOM).  

d

2/d

 
The non-linear 2D engagement model is used to generate sample simulation results of this 
type of engagement. Relevant simulation results are presented in Figure 9 and 10 below. 
                               

 
Figure 8:     Missile engaging two targets flying in formation 
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Figure 9:     Missile performance in multi-target case 
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Figure 10:     Acceleration profile in multi-target case 
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3. Linearised Engagement Equations 

In this section, analytical tools are employed to gain further insight into the performance of 
the interceptor under different engagement conditions and to better understand its dynamic 
response. In particular, the adjoint method is applied to a simplified version of the 
engagement equations. The simplified equations of motion are derived using linearization 
about the line of sight angle between missile and target. The procedure follows closely that 
outlined in Zarchan [1]. 
 
First, define the relative separation between the missile and target perpendicular to the fixed 
reference as defined in Figure 11, 
 
 .

MT
YYy   (17) 

 
The relative acceleration is expressed, by inspection of the figure, as 
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Figure 11:     Engagement Geometry for Linearisation 

For small flight path angles, that is, near head-on or tail chase case, the cosine terms are 
approximately unity, and the previous equation (18),  reduces to 
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Similarly, the line of sight angle, which is given by, 

 ,sin
R

y
  (20) 

 
may also be linearised, using the small angle approximation, yielding the expression 
 

 .
R

y
  (21) 

 
For a head-on case, the closing velocity is approximated by 
 
 ,

TMC
VVV   (22) 

  
and in a tail chase situation, the closing velocity is approximated by 
 
 .

TMC
VVV   (23) 

 
Consequently, for constant missile and target speed, the closing velocity may be treated as a 
positive constant. However, the closing velocity has previously been defined as the negative 
derivative of the range from missile to target, that is, , and since the range must go to 

zero at the end of flight, we can approximate the range equation with the time varying 
relationship,  

RVc


 
 .)( ttVR

FC
  (24) 

 
In the above expression, t denotes the current time and  is the total flight time of the 

engagement. Note that is a constant here.  
Ft

Ft
 
The linearised miss distance is defined to be the relative separation between missile and target 
at the end of flight, namely,  
 
 .)(

F
tyMD   (25) 

 
 
Using equations (19), (21), (24) and (25), and adding the information given by equations (15) 
and (16), we are able to build a block diagram model for the linearised version of the homing 
equations. This model is displayed in Figure 12 below. In the diagram, the symbol s  refers to 
differentiation in the frequency domain using Laplace Transform terminology. 
 
In order to implement this block diagram model in Simulink, it is prudent to combine the 
single s  block with the transfer function block given by )1/(1 s . This is possible in this case 
as 

C
VN '  is a constant. Thus, following this process, the revised block diagram model for the 

linearised equations is presented in Figure 13. This model is designated here as Model A. Note 
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that the block diagram displayed in Figure 13 now contains an inner closed loop block 
structure. This alternative block structure is mathematically equivalent to the single block 
with transfer function )1/( ss  . The process is known as reducing the block to its 

fundamental closed loop form and has been achieved here using standard block diagram 
algebra. This alternative representation is important in the sequel. 
 
 

)(
F

tyMD 

            
Figure 12:     Linearised Geometry Model 

 
 

            
Figure 13:     Linear Model A 

 
 
Model A is typically employed in support of analytical studies of the homing loop problem in 
the literature [1,2,3]. This model is also used as the basis for adjoint analysis of the guidance 
loop. It is shown in the sequel that while this model is useful for performance studies 
associated with target manoeuvre and heading error effects, caution needs to be exercised 
when using the model as a basis for analysis of multi-target problems.  
 
An alternative block diagram structure typically employed in the literature for homing loop 
studies [1,4,5,6] may be derived using the analytical expression for the rate of change of line of 
sight angle. For the non-linear model, the rate of change of the line of sight angle is given in 
equation (13). After applying the linearisation conditions stipulated above, the expression for 
the line of sight rate becomes 
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or equivalently,  
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where the term  

go
t denotes the time to go and is defined as ttt

Fgo
 . 

After incorporating the analytical expression for the line of sight rate into the linearised set of 
equations, an alternative block diagram for the homing loop dynamics may be derived. This 
alternative block diagram, designated as Model B, is displayed in Figure 14.  
 

M

                
Figure 14:     Linear Model B 

 
In the literature, these two models (Model A and Model B) are often used interchangeably as 
the basis for a preliminary analysis of the performance of the generic guided missile homing 
loop [1-6]. The next section covers a comparison of the two models through the use of 
simulation and highlights input conditions under which the models yield different results. For 
these input conditions, caution should be exercised by the analyst when adopting these 
models, particularly when considering Model A. 
 

4. Comparison of the Linearised Models 

The two linear models have been implemented in Simulink in preparation for a comparative 
simulation study. The Simulink implementation of Model A and B are presented in Figures 15 
and 16, respectively. For the present work, the simulations of the linear models are carried out 
under the same input conditions considered in Section 2.2 above. This allows a comparison of 
the simulation results generated by the linear models against those obtained by the non-linear 
model. To do this, the time of intercept displayed in the GUI after running the non-linear 
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model is recorded as the approximate flight time, , for the engagement. This flight time is 

then used in the linear models. Additionally, the same numerical values for the parameters 
are used, as shown in the GUI in Figure 3. 
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Figure 15:     Simulink Implementation of Linear Model A 
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Figure 16:     Simulink Implementation of Linear Model B 

4.1.1 Step in target manoeuvre 

A step in target acceleration of magnitude 3g is applied to both linear models and all other 
inputs are set to zero. The simulation results are presented in Figures 17 and 18 below. 
Figure 17 shows the time history of the relative displacement profile while Figure 18 shows 
the achieved missile acceleration profile. It is clear from the figures that both Model A and 
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Model B simulation results agree. Furthermore, the linear models provide a good 
approximation to the non-linear engagement model in this case.  
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parison of missile acceleration profile in the case of a 3g step in Figure 18:     Com
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4.1.2 Heading error 

In this case, an error in initial heading angle of -20 degrees is considered with all other inputs 
set to zero. Again, the simulation results from the linear models are compared with those 
generated by the non-linear engagement model. The heading error is introduced in the linear 
models as an appropriate initial condition on the first integrator in the Simulink model of 
Figure 15 and 16, respectively. The results of the simulations are presented in Figure 19 and 20 
below. 
 
The figures indicate that both linear models agree in this case and that they represent a good 
approximation to the dynamics of the non-linear engagement model. 
 

                                   
Figure 19:     Comparison of relative displacement profile in the case of a heading error of -20 deg 
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4.1.3 Step in target position 

Here, interest lies in the response of the missile to a sudden step in target position at a certain 
time to go prior to intercept. This scenario simulates the effect of target resolution by the on-
board seeker in a multi-target scenario. For the linearised models, this condition translates 
into an appropriate initial condition placed on the second integrator (Integ1) in Figures 15 and 
16. 
 
Simulink simulations were carried out for both linear models and then compared to the 
corresponding non-linear results, as shown in Figures 20 and 21 below. These plots show that 
Model A results do not agree with Model B results. Furthermore, the plots demonstrate that 
Model B results are a good approximation to the simulation results generated by the non-
linear model. However, the same cannot be said of Model A in this case. 
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Figure 20:     Comparison of missile acceleration profile in the case of a heading error of -20 deg 
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Consequently, the observations gleaned from the foregoing simulations suggest that Model B 
is a sufficiently accurate linear model when considering the missile target engagement 
problem. And this is so regardless of the three input conditions considered. However, caution 
needs to be exercised when using Model A for this purpose as it has been shown via 
simulation to produce erroneous results under one of the stipulated input conditions (see 
Figure 21 and 22).  
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Figure 21:     Comparison of relative displacement profile in the case of a jump in target position of 

60 m 
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Figure 22:      Comparison of missile acceleration profile in the case of a jump in target position of 
60 m 
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5. Derivation of a Correction for Model A 

In this section, an analysis is carried out to explore whether Model A can be brought into 
alignment with Model B when the input condition is a step in target displacement. Consider 
the block diagram of Model A given in Figure 13 and reproduced in Figure 23 for 
convenience. In Figure 23, the states of the system have been included in the block diagram, 
designated by , as has the desired input condition .  ix icy
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tyMD 

     

Figure 23:      Linear Model A with system states displayed 

 
By inspection of the diagram, the state space equations may be easily written down. They are, 
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In this case, the initial conditions are, 0)0(
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Consequently, the initial value of the relative acceleration  will have the magnitude  )0(y
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This is physically impossible as it implies a jump in missile achieved acceleration whenever 
the initial condition on  is non-zero. To counteract this effect, a requirement is placed on the 

filter initial condition as follows, 
y
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tV
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x   (33) 

 
When this correction, in the form of a non-zero initial condition on the filter, is applied to 
Model A, the simulation results generated by both linear models agree as shown in Figure 24 
and 25 below. 
 
Thus, in conclusion, any of the linear models, Model A or Model B, derived previously may be 
used for linear analysis of the missile target engagement problem provided that Model A is 
used in conjunction with the correction factor derived above. It is noteworthy to point out that 
in the case when is zero, no initial correction of the filter is necessary.  icy

 
 
 
 

                                  
Figure 24:     The relative displacement profile generated by the linear models now agree for the 

initial displacement case 
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Figure 25:     The missile acceleration profile generated by the linear models now agree for the initial 
displacement case 
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6. Analytical Formulas 

The linearisation of the engagement model is important for two reasons. Firstly, with a linear 
model, powerful computerised techniques, such as the adjoint method, may be utilised to 
analyse the missile guidance system both statistically and deterministically in one computer 
simulation. Moreover, with this technique, error budgets are automatically generated so that 
key system drivers may be identified and a balanced system design can be achieved. 
Secondly, under special circumstances, the linear engagement model is mathematically 
amenable to analytical solutions. These solutions can assist, during the preliminary phases of 
a missile design, in gaining insights for system sizing. Furthermore, the form of the analytical 
solutions will provide clues on how key parameters may influence system performance.  
 
In this section, closed-form solutions are derived for the three important cases that were 
considered above for the engagement simulations. The aim is to derive closed-form solutions 
associated with Model A and Model B independently and then to show that these solutions 
are mathematically equivalent provided that the filter initial condition is included in Model A. 
It has been shown in the literature [1] that closed form solutions for the linear engagement 
model may be obtained more easily using the adjoint method. Therefore, this is the method 
employed in the derivation process.  
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6.1 Closed-Form Solutions for Model A 

The adjoint block diagram of Model A is presented in Figure 26. This model was constructed 
from the forward loop model given in Figure 13 using the usual rules of adjoint construction 
given in references [1, 3]. Note that 

ic
x in the diagram refers to the filter initial condition 

derived in the last section and is expressed, in this case, as 
 

 .
FC
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ic tV

y
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Also in the diagram, the initial condition for the heading angle error is defined as 
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Figure 26:      Adjoint Model A 

 
In this form, the state equations associated with the adjoint block diagram (Figure 26) are 
mathematically challenging for analytical work. However, using block diagram algebra [1], 
the structure of this block diagram may be conveniently reduced to a form such as to allow 
easy mathematical treatment of the problem. The reduced form of the block diagram is 
presented in Figure 27 below. In the diagram, )(th  is designated as an adjoint output signal 

while the weighting function )(tw , after frequency domain transformation, is defined as 
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M

                                

Figure 27:      Reduced Form of Adjoint Model A 

 
Using the convolution integral, the adjoint output is related to the input by 
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After taking the Laplace Transform of the preceding equation, one obtains 
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the technique of separation of variables is invoked to arrive at 
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The solution to equation (40) is given by 
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where C is a constant of integration. This constant can be evaluated by first noting from 
Figure 27 that the miss distance due to a step in target displacement of magnitude  is given 

by (using frequency domain notation) 
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In the above expression, the term  refers to the Laplace transform of its argument. Let the 
magnitude of the step be unity. Then, in the time domain, the miss distance due to a unit step 
in target displacement at time zero will be unity. Thus, invoking the initial value theorem 
leads to 
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Therefore, C is chosen to satisfy the following relation, 
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In this case, since )(sW is given by equation (36), then it follows that 1C , and equation (41) 

is reduced to 
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Now, after substitution of this expression into equation (45) above, one obtains the 
fundamental relationship 
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Consequently, from inspection of the adjoint block diagram given in Figure 27 above, it is easy 
to write down expressions (in frequency domain notation) for each of the desired outputs as 
follows. The miss distance due to a step manoeuvre of magnitude is given by 

T
n
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The miss distance due to an initial heading error is given by 
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For a step in target displacement, the miss distance formula is composed of two parts, namely, 
that due to and that due to
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y
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while the part due to 

ic
x is, according to Figure 27, 
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Therefore, for an effective navigation ratio of 3, the inverse Laplace Transform of the above 
expressions is taken, yielding the analytical expressions in equations (54) and (55). Note that 
the time variable appearing in the expressions is adjoint time which may be interpreted as 
total flight time 

F
t for the engagement problem.  
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Furthermore, the miss distance due to a step in target displacement may be determined by the 
addition of the inverse Laplace Transform of equations (52) and (53). The closed form 
expression for this is 
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In deriving equation (58) above, use was made of equation (34). Consequently, adding the 
above expressions yields the miss distance due to a step in target displacement of magnitude 
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6.1.1 Adjoint of Model A in Simulink  

A Simulink model of the adjoint system of Model A (Figure 26) is shown in Figure 28. This 
model is used to generate simulation data for comparison with the closed form solutions 
given previously. The comparisons are displayed in the following figures. 
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Figure 28:      Adjoint Model A in Simulink 
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Figure 29:      Adjoint Simulation and Formula agree for MDNT 
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Figure 30:      Adjoint Simulation and Formula agree for MDHE 
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Figure 31:      Adjoint Simulation and Formula agree for MDyic 
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The plots confirm that the closed form solutions and the Simulink simulation results based on 
the linear adjoint of Model A agree for the particular cases considered here. Thus, either 
approach may be used for preliminary system design. Recall that the closed form solutions are 
based on a single time constant guidance loop. However, for higher order systems, the 
equations become mathematically intractable. Thus, using the simulation model allows the 
analyst added flexibility for studying more complex homing loop systems with minimum 
extra effort due to the block diagram features of Simulink. This aspect shall be considered 
further in a later section of the report. 
 
6.1.2 Comparison with non-linear results  

Here, the non-linear engagement model, as presented in Section 1, is used in a multi-run mode 
to generate the miss distance profile as a function of flight time or time to go. This will enable 
a comparison of the non-linear simulation results with those obtained using either the linear 
adjoint model in Simulink or the closed form solutions derived earlier. For the non-linear 
model, the approximate miss distance calculation method, as employed by Zarchan [1], is 
utilised. Furthermore, in order to obtain the miss distance profile as a function of flight time 
using the non-linear simulation, a range to go parameter is defined and utilised in the process. 
 
The miss distance generated using the non-linear model for a step in target manoeuvre of 
magnitude 3g is shown in Figure 32 for different flight times. Superimposed on this plot is the 
miss distance profile computed from the closed form solution for this scenario. It is clear from 
this plot that the closed form solution provides sufficiently accurate results for low values of 
flight time. As the flight time increases, the plot shows that the non-linear results tend to 
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diverge. According to linear theory, the miss distance tends to zero for flight times that are 
approximately greater than ten times the missile response time constant. This is clearly 
evident in the figure as the missile time constant is 0.3 in this case. Consequently, beyond a 
flight time of 3 seconds, linear theory is less accurate in this case.  
 
In Figure 33, the non-linear simulation results are compared with those obtained using the 
closed form solution for the case of an error in initial missile heading angle. In this case, good 
agreement is obtained for most of the flight times considered. Large discrepancies occur when 
the total flight time is very small. This stems from the fact that under such conditions, the 
engagement scenario is significantly non-linear. As a final comparison with the non-linear 
simulation, the case of a step in target displacement is considered. In this case, the non-linear 
simulation results were obtained by looping over different values of homing time, or THOM 
in Figure 3. Again, the closed form solutions, based on the linear analysis, agree reasonably 
well with the non-linear simulation results generated by the Simulink model (see Figure 34). 
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Figure 32:      Formula agrees closely with non-linear simulation for MDNT 
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Figure 33:      Formula agrees closely with non-linear simulation for MDHE 
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Figure 34:      Formula agrees closely with non-linear simulation for MDyic 
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6.2 Closed-Form Solutions for Model B 

In this section, linear Model B is investigated using analytical means. The forward loop block 
diagram of Model B is given in Figure 14. Applying the adjoint construction rules to this block 
diagram yields the adjoint block diagram of Model B as presented in Figure 35.  
 
In Figure 35, the outputs of two of the integrators in the block diagram are designated as 

1
z and

2
z . These are clearly indicated in the figure. From inspection of the block diagram, the 

following expressions may be deduced, namely 
 
 .1)0(,

2221
 zztzz   (60) 

 
Consequently, after integrating this equation, one obtains the expression 
 
 ,

121
Ctzz   (61) 

  
where 

1
C  is a constant. The value of this constant can be determined by noting from Figure 35 

that )(
1

tz  is directly linked to the miss distance due to a heading angle error. Recall that the 

time variable in this case (adjoint model) is interpreted as flight time. Thus, for zero flight 
time, the following must be true, namely, 0)0(

11
Cz . Consequently, equation (61) reduces 

to 
 
 .

21
tzz   (62) 
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Figure 35:      Adjoint Model B 

 
Hence, making use of equation (62) above, and after introducing the expression for the 
weighting function defined earlier in equation (25), the block diagram displayed in Figure 35 
may be judiciously manipulated into the block structure presented in Figure 36.  
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For ease of analysis, the block diagram displayed in Figure 36 is re-cast into the standard 
input-output form shown in Figure 37 below. Note that care must be exercised when doing 
this since the block diagram contains variables from different domains, that is, from the time 
domain )(t  and the frequency domain )(s . In the block diagram of Figure 37, two extra 

variables have been included as adjoint signals of interest, namely, )(
3

tz  and )(
4

tz .  

 

                      

Figure 36:      Equivalent block diagram of adjoint Model B 

 

                      

Figure 37:      Equivalent block diagram in standard form 

 
From Figure 37, the following time domain expressions may be deduced,  
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 ,)]()([
1

)(
0 42  
t

dtzttz 


 (64) 

 
where )(tf  is defined as 

 

  (65) .)}({)( 1 ssWLtf 
 
 
Taking the Laplace Transform of equation (63) and (64) yields the following relationships, 
 

 ,)()(
)(

12

4

2

sZssW
ds

sZd
  (66) 

 

 .
)()(1

)( 34

2 s

sZ

s

sZ
sZ 


  (67) 

 
Furthermore, taking the Laplace Transform of equation (62), yields the relation 
 

 .
)(

)( 2

1 ds

sdZ
sZ   (68) 

 
After some algebra, the following differential equation for )(

1
sZ  is derived, 

 

 .0)(
2

1

1 





  ZsW

sds

dZ  (69) 

 
This differential equation may be readily solved using separation of variables to yield 
 

 ,
)(

)(
2

2

1

 dssW
e

s

C
sZ  (70) 

 
where is a constant. The value of the constant may be determined as follows. From the 

block diagram in Figure 37, the expression for the miss distance due to target displacement 
may be derived. This has the form 

2
C

 
 .)(*

2
tzYTMD

YT
  (71) 

 
Therefore, for a unit step in target displacement at zero flight time, the following condition 
must be true, namely, 
 
 .1)0(

2
z  (72) 
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Note the consistency with equation (60) above, where the same condition arose as a result of 
the impulsive input. 
 
After substituting the expression for )(sW , as defined in equation (25), into equation (70) 

above, and after some algebra, the following expression is obtained,  
 

 .
/1

)(

'

2

2

1

N

s

s

s

C
sZ 









 (73) 

 
From equation (62)  
 

 .
)(

)( 1

2 t

tz
tz   (74) 

 
Thus at zero flight time, the following expression is valid, 
 

 .
)(

0
lim)0( 1

2 t

tz
tz   (75) 

 
Using L’Hopital’s rule and making use of equation (72) yields the expression, 
 

 .0
lim1 1

dt

dz
t   (76) 

 
Now, the Laplace Transform of dtdz /

1
 is given by 

 

 .)0()(
11

1 zssZ
dt

dz
L 







  (77) 

 
However, as was shown earlier, 0)0(

1
z . Hence, the above expression reduces to 

 

 .)(
1

1 ssZ
dt

dz
L 







  (78) 

 
Consequently, returning to equation (76) and invoking the initial value theorem leads to the 
following expression 
 

  (79) .)(lim1
1

2 sZss 

 
Hence, after substituting equation (70) into equation (79), and making use of equation (25), the 
above expression reduces to  
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 .
/1

lim1

'

2

N

s

s
Cs 







 (80) 

 
This implies that 1

2
C . Consequently, the expression for )(

1
sZ is 
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/1

1
)(

'

21

N

s

s

s
sZ 









 (81) 

 
This expression may now be used to deduce the Laplace Transform of the miss distance 
outputs of interest highlighted in Figure 37 above, namely, the miss distance due to target 
manoeuvre,  
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'
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N
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NT s
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 (82) 

 
and the miss distance due to an initial heading error,  
 

 .
/1

)(

'

2

N

M

HA s

s

s

HEV
sMD 










 (83) 

 
Finally, the miss distance due to target displacement is found by making use of equation (74). 
After time domain conversion, this may be expressed as 
 
 ,/)(*)(

1 FFFYT
ttzYTtMD   (84) 

 
where 

F
t denotes flight time. 

 
6.2.1 Closed Form Solutions for N’=3  

Here closed form solutions are derived for a particular value of the navigation ratio, namely, 
3' N . Substitution of this value into the above expressions, and after taking the inverse 

Laplace Transform, yields the following closed form solutions,  
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These agree exactly with the corresponding formulas derived earlier and based on Model A. 
Closed form solutions may also be derived for other values of N’ provided they are integers. 
In fact, several of these closed form solutions have been derived and are reproduced in 
Appendix B. From the closed form solutions given above (and in Appendix B), it is clear that 
the miss distance due to a step in target displacement is related to the miss distance due to a 
heading error. This relationship is investigated further in Appendix C.  
 
However, for non-integer values of N’, the mathematics is complex. In this case, the best 
approach for a solution would be to use simulation. A Simulink representation of Model B is 
displayed in Figure 38 below. As the simulation results agree exactly with those previously 
produced using Model A (see Figures 29-31), only those results generated using Model B will 
be presented here. 
 

                     

 

Figure 38:      Adjoint Model B in Simulink 
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The miss distance due to a target manoeuvre of magnitude 3g (that is, output 3 in Figure 38) is 
presented in Figure 39 for various values of the proportional navigation ratio. From  the same 
simulation, it is possible to extract similar information relating to the miss distance due to a 
heading error (output 2 in the figure) and the miss distance due to a step in target position 
(output 1 in Figure 38). These are presented in Figures 40 and 41 below. It is clear from these 
figures that the miss distance is generally smaller as the navigation ratio increases. 
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Figure 39:      Miss due to Target Manoeuvre for Various N’ 
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Figure 40:      Miss due to Heading Error for Various N’ 

0 1 2 3 4 5
-30

-25

-20

-15

-10

-5

0

5

10

15

Flight Time (s)

M
is

s 
du

e 
to

 H
E

 (
m

)

 

 

N'=2.5

N'=3

N'=3.5
N'=4

N'=4.5

N'=5

Heading Error -20 deg

 = 0.3 s
V

M
 = 1000 m/s

UNCLASSIFIED 
38 



UNCLASSIFIED 
DSTO-TR-2845 

 

                            

Figure 41:      Miss due to Target Displacement for Various N’ 
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7. Higher Order Guidance System Dynamics 

It has been shown that when the guidance system dynamics may be characterised by a single 
time constant, then it is possible to derive closed form solutions for the miss distance. 
However, it is known from reference [1] that the single time constant representation of the 
guidance system seriously underestimates the miss distance. For a more realistic 
representation, reference [1] recommends the use of a fifth order transfer function 
representation. In this case, no closed form solution is possible. Thus the only option is to use 
numerical simulation. 
 
In this section, the fifth order binomial model, as recommended by Zarchan [1], has been 
adopted. The model may be expressed in the form,  
 

 ,
)5/1( 5

'

 s

sVNn CL


  (88) 

 
Using the above model, it is shown that both linear models, namely, Model A and Model B, 
still produce equivalent simulation results provided that the correction term is applied to 
Model A as previously proposed for the single time constant case. 

UNCLASSIFIED 
39 



UNCLASSIFIED 
DSTO-TR-2845 

Firstly, Model A (see Figure 23) is modified to reflect the implementation of the fifth order 
guidance system representation expressed in equation (88) above. After a block diagram 
restructure, this new model is designated as Model A5 and is shown in Figure 42 below. Note 
that, as proposed earlier in the single time constant case, an initial condition 

ic
x on the first 

integrator downstream of the entry point has been included in the model to reflect the case of 
a step in target displacement . As previously, the value of this initial condition is given by 

the expression, 
ic

y

 

 .
FC

ic

ic tV

y
x   (89) 
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tyMD 

            

Figure 42:      Block Diagram of Model A5 

 
Now, following the adjoint construction rules given in [1, 3], it is an easy task to construct the 
adjoint of Model A5. This is shown in Figure 43. 
 
In a similar fashion, the alternative adjoint model based on Model B is constructed. For the 
fifth order system, Model B is designated as Model B5. This is shown in Figure 44 and the 
corresponding adjoint model is shown in Figure 45. 
 
Both models were then programmed in Simulink for subsequent adjoint simulation. The 
results are presented in Figure 46 through to Figure 48 inclusively. It is clear that both models 
yield the same results in this case and hence any of the models may be used interchangeably 
for the guidance loop analysis provided that the proposed correction strategy derived here is 
adopted when using Model A. 
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Figure 43:      Adjoint Block Diagram of Model A5 

 
 
 

                   

Figure 44:      Block Diagram of Model B5 
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Figure 45:      Adjoint Block Diagram of Model B5 

 
 
 

                            

Figure 46:      Miss Distance due to Target Manoeuvre for 5th Order System 
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Figure 47:      Miss Distance due to Heading Error for 5th Order System 
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Figure 48:      Miss Distance due to Target Displacement for 5th Order System 
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8. Conclusions 

In this report, attention is focussed on the models and tools often adopted for the linear 
analysis of missile-target engagements in two dimensions. Following a review of the  
non-linear dynamic equations describing the problem, two linear models were developed for 
the linear analysis. These models are often used interchangeably in the literature for missile 
guidance loop analysis. However, it is shown here that under certain initial conditions of the 
state variables, the two models yield significantly different results. Hence, caution needs to be 
exercised by the analyst when adopting these models for missile homing loop analysis.  
 
Following closer analysis, a correction factor was derived which may be used to render the 
two models equivalent. This correction factor was then used as the basis for deriving closed 
form solutions to the problem in the case when the guidance system may be approximately 
represented by a single time constant system. After carrying out the mathematics, it was 
demonstrated that both models yield the same closed form solution for the particular inputs 
considered.  
 
The models were then implemented in Simulink and it was shown how they could be used for 
assessment of other problems in which the closed form solutions are not available. In addition 
to insights gained on system performance, another benefit of having derived the closed form 
solutions to this problem was the observation that two of the analytical relationships were 
indeed connected. Consequently, it was shown how this fact could be utilised for the 
generation of performance data associated with the study of multiple targets using the system 
response to a heading error input. 
 
Finally, the power and flexibility of Simulink was utilised to demonstrate how easily these 
linearised engagement models and their adjoints could be extended to accommodate higher 
order and more complex dynamic system representations of the guidance loop.  
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Appendix A:  Non-linear Engagement Model in 
MATLAB/Simulink  

A.1. Details of the Simulink Model  

A.1.1 The Simulink Subsystem Models  

The missile dynamics equations and the target dynamic equations are implemented in 
Simulink as subsystems, as shown in the figures below. 
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Figure A1. Missile Dynamics Subsystem 
 
 
The Missile Dynamics Subsystem (Figure A1) contains all of the blocks required to 
simulate the missile dynamics as represented by the non-linear equations given in th

 

e text. 
 
In a similar fashion, the Target Dynamics Subsystem (Figure A2) contains all of the blocks 
required to simulate the target dynamics in accordance with the target equations given in 
the text. In order to accommodate a sudden change in target position, a switch block has 
been included in the Simulink model. The switch, in this case, is used to simulate the 
different values of the target position to be represented in the simulation at the moment of 
seeker resolution in a multiple target scenario. It was necessary to insert a unit delay in the 
loop in order to avoid an inherent algebraic loop condition causing the simulation to fail. 
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The implementation of the relative dynamics is shown in Figure A3. 
 

4

Tgo

3

Vc

2

Nc

1

lamda

Prod

Np

Np

DelX

DelY

DelVX

DelVY

LamDot

Lamda Dot

1
s

Int

VMX

VMY

VTX

VTY

DelVX

DelVY

DelV

XM

YM

XT

YT

DelX

DelY

DelR
DelX

DelY

DelVX

DelVY

Tgo

Vc

Closing Vel

8

VMY

7

VMX

6

VTY

5

VTX

4

YT

3

XT

2

YM

1

XM
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Figure A5. DelV Subsystem Figure A4. DelR Subsystem 

 

 

  
 
 

 

Figure A6. Closing Vel Subsystem Figure A7. Stop Condition 

      

 
 

 
Figure A8. Lamda Dot Subsystem 
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Note that the Relative Dynamics subsystem block shown in Figure A3 is composed of the 
subsystems given in Figures A4, A5, A6 and A8. The simulation stopping condition model is 
shown in Figure A7.  
 
 
A.1.2 The Associated MATLAB Code 

The missile-target engagement model represented in Simulink is controlled by a Graphical 
User Interface underpinned by MATLAB code. The complete MATLAB code is listed over the 
following pages. 
 
  

 

Figure A9. MATLAB Code 
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Figure A10. MATLAB Code (continued) 

 
 
 

                        

Figure A11. MATLAB Code (continued) 
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Figure A12. MATLAB Code (continued) 

 
 
 

                        

Figure A13. MATLAB Code (continued) 
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Figure A14. MATLAB Code (continued) 

 
 
 

                        

Figure A15. MATLAB Code (continued) 
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Figure A16. MATLAB Code (continued) 

 
 
 

                        

Figure A17. MATLAB Code (continued) 
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Figure A18. MATLAB Code (continued) 

 
 
 

                        

Figure A19. MATLAB Code (continued) 
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Figure A20. MATLAB Code (continued) 

 
 
 

                        

Figure A21. MATLAB Code (continued) 
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Figure A22. MATLAB Code (continued) 

 
 
 

                        

Figure A23. MATLAB Code (continued) 
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Figure A24. MATLAB Code (continued) 

 
 
 

                        

Figure A25. MATLAB Code (continued) 
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Figure A26. MATLAB Code (continued) 
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Appendix B:  Closed Form Solutions for Single Time 
Constant Guidance System 

 
 
If the guidance system can be approximated by a single time constant parameter with transfer 
function of the form, (see equation (25) in the text)  
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  (B1) 

then, for integral values of 'N , it has been shown in the text how to derive useful closed form 
solutions to the linear en  problem. In particular, typical closed form solutions have 
been provided therein for the specific case when 

gagement
3' N . These analytical expressions are 

useful when producing design curves during the preliminary stages of a guided missile 
program. In this appendix, closed form solutions values offor integral  'N in the range [4 – 6] 
are provided. 
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B.2. Solution for N’ = 5 
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.3. Solution for N’ = 6 
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b s have been verified against the Simulink models. 

 is interesting to note from the above expressions that the miss distance due to a target 
 the miss distance due to a 

llowing way, 
 

 
The a ove closed form solution
 
It
displacement appears to be directly related to heading error in the 
fo
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here  is an integer greater than 2. In fact, through simul
 straightforward to verify that this relationship holds true even for non-

tege alues of

 
w ation of the adjoint models in  n
Simulink, it was

r v  'Nin  and also for higher order systems such as the fifth order binomial 
ystem. Further investigations of this relationship are carried out in Appendix C. 
 

s
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Appendix C:  Alternative Approach to P
Prediction of Miss Distance due to a Step in Target 

Displacement 

he relationship given in equation (B11) expresses the fact that the miss distance due to a step 
 target displacement, for a single time constant system, may be determined by knowing the 
iss distance due to an initial error in heading angle. That is, imposing an initial heading 

orm 

erformance 

T
in
m
angle on the interceptor of the f
 

,
F

t

YT
HA   (C1) 

 
nd assuming there are no other inputs to the system, then the miss distance output for the 
roblem is that due to a step in target displacement of magnitude 

a
p YT . This is certainly true of 

e closed form solutions given in the main text and in Appendi ove
here will focus on whether this is true for non-integral values of 
th . The investigation x B ab

'N  and also for higher order 
uidance systems. 

Let the initial heading angle condition, equivalent to equation (C1) above, be denoted by 
AYT. Imposing this condition on the first integrator in Figure C1 is tantamount to imposing a 

or in the 

alysis, either Model A or Model B may be used in this case as they have been 
hown to produce equivalent results when the input is heading error. For the present 
vestigation, Model A is employed. The Model A forward l

the HAYT initial condition, as expressed in equation (C1), is presented in Figure C1. 

                                 

 

Figure C1:      Model A with HAYT condition 
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The les 
and
 
 

                                   

 

is employed here because of the desire to compare the miss distance 
rofiles in only one run. The Simulink representation of the adjoint block diagram for carrying 

         

Figure C3:      Simulink Representation of Adjoint Model A  

 
wn in Figure C3 are of interest. Output channels 1 

e response to a step in target displacement 

adjoint model of Figure C1 may be easily constructed using the adjoint construction ru
 is displayed in Figure C2.  

Figure C2:      Adjoint of Model A with HAYT condition 

 
 
The adjoint model 
p
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of magnitude YT=yic while output channel 2 provides the data for the same response via the  
indirect approach proposed here using the HAYT condition. 

he miss distance results generated for the case of a single time constant system are compared 
cted values of the navigation ratio, the plots compare the miss distance 

yic ) derived using the conventional approach with that 
using the HAYT approach. It is clear from the figure that the results agree even if the value of 

 
T
in Figure C4. For sele
due to a target displacement ( YT=

'N is non-integral. In Figure C5, simulation results generated on the basis of a fifth order 
guidance system are presented. Again, the HAYT approach is seen to agree favourably with 
the conventional approach to the miss distance problem for this case. 
 
In conclusion, for a linear guidance system, the miss distance performance due to a step in 
target displacement may be determined on the basis of an appropriate heading error input 
thus eliminating the need to model the target displacement effect conventionally. This 
approach also obviates the need to incorporate the correction factor in Model A as outlined 

 

earlier in the text. 
 

              

Figure C4:      Comparison of HAYT approach with direct approach for single time constant system  
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Figure C5:    

 
 
C.2. 

In this t of the non-
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uivalent 
initial condit dition, 
it is necessar d, the 

 

  Comparison of HAYT approach with direct approach for fifth order system  

Non-linear System Investigations 

section, the accuracy of the HAYT approach is investigated in the contex
linear simulation model. Figure C6 shows the typical trajectories involved when 
implementing either the conventional approach or the HAYT approach. As stated earl
conventional approach here means applying the target displacement initial condition at a 
certain time to go before intercept while the HAYT approach means applying an eq

ion in accordance with equation (C1). In order to implement the HAYT con
y to estimate the intercept time at the start of the simulation. In this regar

following approximation is utilised, namely, 
CF

VRt / . In Figure C7 is presented the miss 

distance profile generated by carrying out multiple runs of the non-linear simulation model
employing the HAYT initial condition. All other inputs are set to zero in this case. 

posed on this plot is the corresponding miss distance profile produced by th

 

linear Superim e 
model. The results agree favourably. 
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Figure C6:      Comparison of Conventional and HAYT based Trajectories  

d results with those generated using the conventional 
pproach is made, using the non-linear model outlined in Section 2 in the text. All inputs 

     

Figure C7:      Comparison of Linear and Non-linear Results using the HAYT Condition 
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except the initial target displacement are set to zero in this case. The simulation results are 
shown in Figure C8 below. 
 
The non-linear simulations are repeated in order to examine the effects on the miss distance 
results due to other input conditions, such as target manoeuvre and heading error. The total 
miss distance results are shown in Figure C9 below. Note that these results are based on a 
target displacement of 60 m. 
 

                                  
Figure C8:      Non-linear Results Comparing Conventional and HAYT Approach (Single Input) 
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Figure C9:      Non-linear Results Comparing Conventional and HAYT Approach (Multiple Inputs) 
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Figure C10:      Comparison of HAY
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